Search (19 results, page 1 of 1)

  • × theme_ss:"Visualisierung"
  • × type_ss:"a"
  1. Seeliger, F.: ¬A tool for systematic visualization of controlled descriptors and their relation to others as a rich context for a discovery system (2015) 0.08
    0.0783509 = product of:
      0.11752635 = sum of:
        0.10143948 = weight(_text_:systematic in 2547) [ClassicSimilarity], result of:
          0.10143948 = score(doc=2547,freq=4.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.35721707 = fieldWeight in 2547, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.03125 = fieldNorm(doc=2547)
        0.016086869 = product of:
          0.032173738 = sum of:
            0.032173738 = weight(_text_:indexing in 2547) [ClassicSimilarity], result of:
              0.032173738 = score(doc=2547,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.16916946 = fieldWeight in 2547, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2547)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The discovery service (a search engine and service called WILBERT) used at our library at the Technical University of Applied Sciences Wildau (TUAS Wildau) is comprised of more than 8 million items. If we were to record all licensed publications in this tool to a higher level of articles, including their bibliographic records and full texts, we would have a holding estimated at a hundred million documents. A lot of features, such as ranking, autocompletion, multi-faceted classification, refining opportunities reduce the number of hits. However, it is not enough to give intuitive support for a systematic overview of topics related to documents in the library. John Naisbitt once said: "We are drowning in information, but starving for knowledge." This quote is still very true today. Two years ago, we started to develop micro thesauri for MINT topics in order to develop an advanced indexing of the library stock. We use iQvoc as a vocabulary management system to create the thesaurus. It provides an easy-to-use browser interface that builds a SKOS thesaurus in the background. The purpose of this is to integrate the thesauri in WILBERT in order to offer a better subject-related search. This approach especially supports first-year students by giving them the possibility to browse through a hierarchical alignment of a subject, for instance, logistics or computer science, and thereby discover how the terms are related. It also supports the students with an insight into established abbreviations and alternative labels. Students at the TUAS Wildau were involved in the developmental process of the software regarding the interface and functionality of iQvoc. The first steps have been taken and involve the inclusion of 3000 terms in our discovery tool WILBERT.
  2. Leide, J.E.; Large, A.; Beheshti, J.; Brooks, M.; Cole, C.: Visualization schemes for domain novices exploring a topic space : the navigation classification scheme (2003) 0.07
    0.07317951 = product of:
      0.10976927 = sum of:
        0.08966068 = weight(_text_:systematic in 1078) [ClassicSimilarity], result of:
          0.08966068 = score(doc=1078,freq=2.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.31573826 = fieldWeight in 1078, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1078)
        0.020108584 = product of:
          0.04021717 = sum of:
            0.04021717 = weight(_text_:indexing in 1078) [ClassicSimilarity], result of:
              0.04021717 = score(doc=1078,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.21146181 = fieldWeight in 1078, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1078)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    In this article and two other articles which conceptualize a future stage of the research program (Leide, Cole, Large, & Beheshti, submitted for publication; Cole, Leide, Large, Beheshti, & Brooks, in preparation), we map-out a domain novice user's encounter with an IR system from beginning to end so that appropriate classification-based visualization schemes can be inserted into the encounter process. This article describes the visualization of a navigation classification scheme only. The navigation classification scheme uses the metaphor of a ship and ship's navigator traveling through charted (but unknown to the user) waters, guided by a series of lighthouses. The lighthouses contain mediation interfaces linking the user to the information store through agents created for each. The user's agent is the cognitive model the user has of the information space, which the system encourages to evolve via interaction with the system's agent. The system's agent is an evolving classification scheme created by professional indexers to represent the structure of the information store. We propose a more systematic, multidimensional approach to creating evolving classification/indexing schemes, based on where the user is and what she is trying to do at that moment during the search session.
  3. Xiaoyue M.; Cahier, J.-P.: Iconic categorization with knowledge-based "icon systems" can improve collaborative KM (2011) 0.03
    0.029886894 = product of:
      0.08966068 = sum of:
        0.08966068 = weight(_text_:systematic in 4837) [ClassicSimilarity], result of:
          0.08966068 = score(doc=4837,freq=2.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.31573826 = fieldWeight in 4837, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4837)
      0.33333334 = coord(1/3)
    
    Abstract
    Icon system could represent an efficient solution for collective iconic categorization of knowledge by providing graphical interpretation. Their pictorial characters assist visualizing the structure of text to become more understandable beyond vocabulary obstacle. In this paper we are proposing a Knowledge Engineering (KM) based iconic representation approach. We assume that these systematic icons improve collective knowledge management. Meanwhile, text (constructed under our knowledge management model - Hypertopic) helps to reduce the diversity of graphical understanding belonging to different users. This "position paper" also prepares to demonstrate our hypothesis by an "iconic social tagging" experiment which is to be accomplished in 2011 with UTT students. We describe the "socio semantic web" information portal involved in this project, and a part of the icons already designed for this experiment in Sustainability field. We have reviewed existing theoretical works on icons from various origins, which can be used to lay the foundation of robust "icons systems".
  4. Parsons, P.; Sedig, K.: Adjustable properties of visual representations : improving the quality of human-information interaction (2014) 0.03
    0.029886894 = product of:
      0.08966068 = sum of:
        0.08966068 = weight(_text_:systematic in 1214) [ClassicSimilarity], result of:
          0.08966068 = score(doc=1214,freq=2.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.31573826 = fieldWeight in 1214, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1214)
      0.33333334 = coord(1/3)
    
    Abstract
    Complex cognitive activities, such as analytical reasoning, problem solving, and sense making, are often performed through the mediation of interactive computational tools. Examples include visual analytics, decision support, and educational tools. Through interaction with visual representations of information at the visual interface of these tools, a joint, coordinated cognitive system is formed. This partnership results in a number of relational properties-those depending on both humans and tools-that researchers and designers must be aware of if such tools are to effectively support the performance of complex cognitive activities. This article presents 10 properties of interactive visual representations that are essential and relational and whose values can be adjusted through interaction. By adjusting the values of these properties, better coordination between humans and tools can be effected, leading to higher quality performance of complex cognitive activities. This article examines how the values of these properties affect cognitive processing and visual reasoning and demonstrates the necessity of making their values adjustable-all of which is situated within a broader theoretical framework concerned with human-information interaction in complex cognitive activities. This framework can facilitate systematic research, design, and evaluation in numerous fields including information visualization, health informatics, visual analytics, and educational technology.
  5. Eckert, K.; Pfeffer, M.; Stuckenschmidt, H.: Assessing thesaurus-based annotations for semantic search applications (2008) 0.02
    0.020983277 = product of:
      0.06294983 = sum of:
        0.06294983 = product of:
          0.12589966 = sum of:
            0.12589966 = weight(_text_:indexing in 1528) [ClassicSimilarity], result of:
              0.12589966 = score(doc=1528,freq=10.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.6619802 = fieldWeight in 1528, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1528)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Statistical methods for automated document indexing are becoming an alternative to the manual assignment of keywords. We argue that the quality of the thesaurus used as a basis for indexing in regard to its ability to adequately cover the contents to be indexed and as a basis for the specific indexing method used is of crucial importance in automatic indexing. We present an interactive tool for thesaurus evaluation that is based on a combination of statistical measures and appropriate visualisation techniques that supports the detection of potential problems in a thesaurus. We describe the methods used and show that the tool supports the detection and correction of errors, leading to a better indexing result.
  6. Platis, N. et al.: Visualization of uncertainty in tag clouds (2016) 0.01
    0.011219318 = product of:
      0.033657953 = sum of:
        0.033657953 = product of:
          0.06731591 = sum of:
            0.06731591 = weight(_text_:22 in 2755) [ClassicSimilarity], result of:
              0.06731591 = score(doc=2755,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.38690117 = fieldWeight in 2755, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2755)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    1. 2.2016 18:25:22
  7. Chowdhury, S.; Chowdhury, G.G.: Using DDC to create a visual knowledge map as an aid to online information retrieval (2004) 0.01
    0.009287758 = product of:
      0.027863273 = sum of:
        0.027863273 = product of:
          0.055726547 = sum of:
            0.055726547 = weight(_text_:indexing in 2643) [ClassicSimilarity], result of:
              0.055726547 = score(doc=2643,freq=6.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2930101 = fieldWeight in 2643, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2643)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Content
    1. Introduction Web search engines and digital libraries usually expect the users to use search terms that most accurately represent their information needs. Finding the most appropriate search terms to represent an information need is an age old problem in information retrieval. Keyword or phrase search may produce good search results as long as the search terms or phrase(s) match those used by the authors and have been chosen for indexing by the concerned information retrieval system. Since this does not always happen, a large number of false drops are produced by information retrieval systems. The retrieval results become worse in very large systems that deal with millions of records, such as the Web search engines and digital libraries. Vocabulary control tools are used to improve the performance of text retrieval systems. Thesauri, the most common type of vocabulary control tool used in information retrieval, appeared in the late fifties, designed for use with the emerging post-coordinate indexing systems of that time. They are used to exert terminology control in indexing, and to aid in searching by allowing the searcher to select appropriate search terms. A large volume of literature exists describing the design features, and experiments with the use, of thesauri in various types of information retrieval systems (see for example, Furnas et.al., 1987; Bates, 1986, 1998; Milstead, 1997, and Shiri et al., 2002).
  8. Rolling, L.: ¬The role of graphic display of concept relationships in indexing and retrieval vocabularies (1985) 0.01
    0.0075834226 = product of:
      0.022750268 = sum of:
        0.022750268 = product of:
          0.045500536 = sum of:
            0.045500536 = weight(_text_:indexing in 3646) [ClassicSimilarity], result of:
              0.045500536 = score(doc=3646,freq=4.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.23924173 = fieldWeight in 3646, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3646)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The use of diagrams to express relationships in classification is not new. Many classificationists have used this approach, but usually in a minor display to make a point or for part of a difficult relational situation. Ranganathan, for example, used diagrams for some of his more elusive concepts. The thesaurus in particular and subject headings in general, with direct and indirect crossreferences or equivalents, need many more diagrams than normally are included to make relationships and even semantics clear. A picture very often is worth a thousand words. Rolling has used directed graphs (arrowgraphs) to join terms as a practical method for rendering relationships between indexing terms lucid. He has succeeded very weIl in this endeavor. Four diagrams in this selection are all that one needs to explain how to employ the system; from initial listing to completed arrowgraph. The samples of his work include illustration of off-page connectors between arrowgraphs. The great advantage to using diagrams like this is that they present relations between individual terms in a format that is easy to comprehend. But of even greater value is the fact that one can use his arrowgraphs as schematics for making three-dimensional wire-and-ball models, in which the relationships may be seen even more clearly. In fact, errors or gaps in relations are much easier to find with this methodology. One also can get across the notion of the threedimensionality of classification systems with such models. Pettee's "hand reaching up and over" (q.v.) is not a figment of the imagination. While the actual hand is a wire or stick, the concept visualized is helpful in illuminating the three-dimensional figure that is latent in all systems that have cross-references or "broader," "narrower," or, especially, "related" terms. Classification schedules, being hemmed in by the dimensions of the printed page, also benefit from such physical illustrations. Rolling, an engineer by conviction, was the developer of information systems for the Cobalt Institute, the European Atomic Energy Community, and European Coal and Steel Community. He also developed and promoted computer-aided translation at the Commission of the European Communities in Luxembourg. One of his objectives has always been to increase the efficiency of mono- and multilingual thesauri for use in multinational information systems.
  9. Osinska, V.; Bala, P.: New methods for visualization and improvement of classification schemes : the case of computer science (2010) 0.01
    0.0067315903 = product of:
      0.02019477 = sum of:
        0.02019477 = product of:
          0.04038954 = sum of:
            0.04038954 = weight(_text_:22 in 3693) [ClassicSimilarity], result of:
              0.04038954 = score(doc=3693,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.23214069 = fieldWeight in 3693, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3693)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 7.2010 19:36:46
  10. Leydesdorff, L.: Visualization of the citation impact environments of scientific journals : an online mapping exercise (2007) 0.01
    0.0067028617 = product of:
      0.020108584 = sum of:
        0.020108584 = product of:
          0.04021717 = sum of:
            0.04021717 = weight(_text_:indexing in 82) [ClassicSimilarity], result of:
              0.04021717 = score(doc=82,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.21146181 = fieldWeight in 82, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=82)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Theme
    Citation indexing
  11. Zou, J.; Thoma, G.; Antani, S.: Unified deep neural network for segmentation and labeling of multipanel biomedical figures (2020) 0.01
    0.0067028617 = product of:
      0.020108584 = sum of:
        0.020108584 = product of:
          0.04021717 = sum of:
            0.04021717 = weight(_text_:indexing in 10) [ClassicSimilarity], result of:
              0.04021717 = score(doc=10,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.21146181 = fieldWeight in 10, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=10)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Recent efforts in biomedical visual question answering (VQA) research rely on combined information gathered from the image content and surrounding text supporting the figure. Biomedical journals are a rich source of information for such multimodal content indexing. For multipanel figures in these journals, it is critical to develop automatic figure panel splitting and label recognition algorithms to associate individual panels with text metadata in the figure caption and the body of the article. Challenges in this task include large variations in figure panel layout, label location, size, contrast to background, and so on. In this work, we propose a deep convolutional neural network, which splits the panels and recognizes the panel labels in a single step. Visual features are extracted from several layers at various depths of the backbone neural network and organized to form a feature pyramid. These features are fed into classification and regression networks to generate candidates of panels and their labels. These candidates are merged to create the final panel segmentation result through a beam search algorithm. We evaluated the proposed algorithm on the ImageCLEF data set and achieved better performance than the results reported in the literature. In order to thoroughly investigate the proposed algorithm, we also collected and annotated our own data set of 10,642 figures. The experiments, trained on 9,642 figures and evaluated on the remaining 1,000 figures, show that combining panel splitting and panel label recognition mutually benefit each other.
  12. Chen, C.: CiteSpace II : detecting and visualizing emerging trends and transient patterns in scientific literature (2006) 0.01
    0.005609659 = product of:
      0.016828977 = sum of:
        0.016828977 = product of:
          0.033657953 = sum of:
            0.033657953 = weight(_text_:22 in 5272) [ClassicSimilarity], result of:
              0.033657953 = score(doc=5272,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.19345059 = fieldWeight in 5272, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5272)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 7.2006 16:11:05
  13. Wu, K.-C.; Hsieh, T.-Y.: Affective choosing of clustering and categorization representations in e-book interfaces (2016) 0.01
    0.005609659 = product of:
      0.016828977 = sum of:
        0.016828977 = product of:
          0.033657953 = sum of:
            0.033657953 = weight(_text_:22 in 3070) [ClassicSimilarity], result of:
              0.033657953 = score(doc=3070,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.19345059 = fieldWeight in 3070, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3070)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    20. 1.2015 18:30:22
  14. Wu, I.-C.; Vakkari, P.: Effects of subject-oriented visualization tools on search by novices and intermediates (2018) 0.01
    0.005609659 = product of:
      0.016828977 = sum of:
        0.016828977 = product of:
          0.033657953 = sum of:
            0.033657953 = weight(_text_:22 in 4573) [ClassicSimilarity], result of:
              0.033657953 = score(doc=4573,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.19345059 = fieldWeight in 4573, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4573)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    9.12.2018 16:22:25
  15. Osinska, V.; Kowalska, M.; Osinski, Z.: ¬The role of visualization in the shaping and exploration of the individual information space : part 1 (2018) 0.01
    0.005609659 = product of:
      0.016828977 = sum of:
        0.016828977 = product of:
          0.033657953 = sum of:
            0.033657953 = weight(_text_:22 in 4641) [ClassicSimilarity], result of:
              0.033657953 = score(doc=4641,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.19345059 = fieldWeight in 4641, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4641)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    21.12.2018 17:22:13
  16. Golub, K.; Ziolkowski, P.M.; Zlodi, G.: Organizing subject access to cultural heritage in Swedish online museums (2022) 0.01
    0.00536229 = product of:
      0.016086869 = sum of:
        0.016086869 = product of:
          0.032173738 = sum of:
            0.032173738 = weight(_text_:indexing in 688) [ClassicSimilarity], result of:
              0.032173738 = score(doc=688,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.16916946 = fieldWeight in 688, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.03125 = fieldNorm(doc=688)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose The study aims to paint a representative picture of the current state of search interfaces of Swedish online museum collections, focussing on search functionalities with particular reference to subject searching, as well as the use of controlled vocabularies, with the purpose of identifying which improvements of the search interfaces are needed to ensure high-quality information retrieval for the end user. Design/methodology/approach In the first step, a set of 21 search interface criteria was identified, based on related research and current standards in the domain of cultural heritage knowledge organization. Secondly, a complete set of Swedish museums that provide online access to their collections was identified, comprising nine cross-search services and 91 individual museums' websites. These 100 websites were each evaluated against the 21 criteria, between 1 July and 31 August 2020. Findings Although many standards and guidelines are in place to ensure quality-controlled subject indexing, which in turn support information retrieval of relevant resources (as individual or full search results), the study shows that they are not broadly implemented, resulting in information retrieval failures for the end user. The study also demonstrates a strong need for the implementation of controlled vocabularies in these museums. Originality/value This study is a rare piece of research which examines subject searching in online museums; the 21 search criteria and their use in the analysis of the complete set of online collections of a country represents a considerable and unique contribution to the fields of knowledge organization and information retrieval of cultural heritage. Its particular value lies in showing how the needs of end users, many of which are documented and reflected in international standards and guidelines, should be taken into account in designing search tools for these museums; especially so in subject searching, which is the most complex and yet the most common type of search. Much effort has been invested into digitizing cultural heritage collections, but access to them is hindered by poor search functionality. This study identifies which are the most important aspects to improve.
  17. Spero, S.: LCSH is to thesaurus as doorbell is to mammal : visualizing structural problems in the Library of Congress Subject Headings (2008) 0.00
    0.0044877273 = product of:
      0.013463181 = sum of:
        0.013463181 = product of:
          0.026926363 = sum of:
            0.026926363 = weight(_text_:22 in 2659) [ClassicSimilarity], result of:
              0.026926363 = score(doc=2659,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.15476047 = fieldWeight in 2659, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2659)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  18. Batorowska, H.; Kaminska-Czubala, B.: Information retrieval support : visualisation of the information space of a document (2014) 0.00
    0.0044877273 = product of:
      0.013463181 = sum of:
        0.013463181 = product of:
          0.026926363 = sum of:
            0.026926363 = weight(_text_:22 in 1444) [ClassicSimilarity], result of:
              0.026926363 = score(doc=1444,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.15476047 = fieldWeight in 1444, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1444)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  19. Graphic details : a scientific study of the importance of diagrams to science (2016) 0.00
    0.0033657951 = product of:
      0.010097385 = sum of:
        0.010097385 = product of:
          0.02019477 = sum of:
            0.02019477 = weight(_text_:22 in 3035) [ClassicSimilarity], result of:
              0.02019477 = score(doc=3035,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.116070345 = fieldWeight in 3035, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=3035)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Content
    As the team describe in a paper posted (http://arxiv.org/abs/1605.04951) on arXiv, they found that figures did indeed matter-but not all in the same way. An average paper in PubMed Central has about one diagram for every three pages and gets 1.67 citations. Papers with more diagrams per page and, to a lesser extent, plots per page tended to be more influential (on average, a paper accrued two more citations for every extra diagram per page, and one more for every extra plot per page). By contrast, including photographs and equations seemed to decrease the chances of a paper being cited by others. That agrees with a study from 2012, whose authors counted (by hand) the number of mathematical expressions in over 600 biology papers and found that each additional equation per page reduced the number of citations a paper received by 22%. This does not mean that researchers should rush to include more diagrams in their next paper. Dr Howe has not shown what is behind the effect, which may merely be one of correlation, rather than causation. It could, for example, be that papers with lots of diagrams tend to be those that illustrate new concepts, and thus start a whole new field of inquiry. Such papers will certainly be cited a lot. On the other hand, the presence of equations really might reduce citations. Biologists (as are most of those who write and read the papers in PubMed Central) are notoriously mathsaverse. If that is the case, looking in a physics archive would probably produce a different result.