Search (35 results, page 1 of 2)

  • × theme_ss:"Retrievalalgorithmen"
  1. Efthimiadis, E.N.: User choices : a new yardstick for the evaluation of ranking algorithms for interactive query expansion (1995) 0.05
    0.048897676 = product of:
      0.09779535 = sum of:
        0.09779535 = sum of:
          0.06741798 = weight(_text_:e.g in 5697) [ClassicSimilarity], result of:
            0.06741798 = score(doc=5697,freq=2.0), product of:
              0.23393378 = queryWeight, product of:
                5.2168427 = idf(docFreq=651, maxDocs=44218)
                0.044842023 = queryNorm
              0.28819257 = fieldWeight in 5697, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.2168427 = idf(docFreq=651, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5697)
          0.030377375 = weight(_text_:22 in 5697) [ClassicSimilarity], result of:
            0.030377375 = score(doc=5697,freq=2.0), product of:
              0.15702912 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.044842023 = queryNorm
              0.19345059 = fieldWeight in 5697, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5697)
      0.5 = coord(1/2)
    
    Abstract
    The performance of 8 ranking algorithms was evaluated with respect to their effectiveness in ranking terms for query expansion. The evaluation was conducted within an investigation of interactive query expansion and relevance feedback in a real operational environment. Focuses on the identification of algorithms that most effectively take cognizance of user preferences. user choices (i.e. the terms selected by the searchers for the query expansion search) provided the yardstick for the evaluation of the 8 ranking algorithms. This methodology introduces a user oriented approach in evaluating ranking algorithms for query expansion in contrast to the standard, system oriented approaches. Similarities in the performance of the 8 algorithms and the ways these algorithms rank terms were the main focus of this evaluation. The findings demonstrate that the r-lohi, wpq, enim, and porter algorithms have similar performance in bringing good terms to the top of a ranked list of terms for query expansion. However, further evaluation of the algorithms in different (e.g. full text) environments is needed before these results can be generalized beyond the context of the present study
    Date
    22. 2.1996 13:14:10
  2. Khoo, C.S.G.; Wan, K.-W.: ¬A simple relevancy-ranking strategy for an interface to Boolean OPACs (2004) 0.03
    0.03422837 = product of:
      0.06845674 = sum of:
        0.06845674 = sum of:
          0.04719258 = weight(_text_:e.g in 2509) [ClassicSimilarity], result of:
            0.04719258 = score(doc=2509,freq=2.0), product of:
              0.23393378 = queryWeight, product of:
                5.2168427 = idf(docFreq=651, maxDocs=44218)
                0.044842023 = queryNorm
              0.20173478 = fieldWeight in 2509, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.2168427 = idf(docFreq=651, maxDocs=44218)
                0.02734375 = fieldNorm(doc=2509)
          0.021264162 = weight(_text_:22 in 2509) [ClassicSimilarity], result of:
            0.021264162 = score(doc=2509,freq=2.0), product of:
              0.15702912 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.044842023 = queryNorm
              0.1354154 = fieldWeight in 2509, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.02734375 = fieldNorm(doc=2509)
      0.5 = coord(1/2)
    
    Content
    "Most Web search engines accept natural language queries, perform some kind of fuzzy matching and produce ranked output, displaying first the documents that are most likely to be relevant. On the other hand, most library online public access catalogs (OPACs) an the Web are still Boolean retrieval systems that perform exact matching, and require users to express their search requests precisely in a Boolean search language and to refine their search statements to improve the search results. It is well-documented that users have difficulty searching Boolean OPACs effectively (e.g. Borgman, 1996; Ensor, 1992; Wallace, 1993). One approach to making OPACs easier to use is to develop a natural language search interface that acts as a middleware between the user's Web browser and the OPAC system. The search interface can accept a natural language query from the user and reformulate it as a series of Boolean search statements that are then submitted to the OPAC. The records retrieved by the OPAC are ranked by the search interface before forwarding them to the user's Web browser. The user, then, does not need to interact directly with the Boolean OPAC but with the natural language search interface or search intermediary. The search interface interacts with the OPAC system an the user's behalf. The advantage of this approach is that no modification to the OPAC or library system is required. Furthermore, the search interface can access multiple OPACs, acting as a meta search engine, and integrate search results from various OPACs before sending them to the user. The search interface needs to incorporate a method for converting the user's natural language query into a series of Boolean search statements, and for ranking the OPAC records retrieved. The purpose of this study was to develop a relevancyranking algorithm for a search interface to Boolean OPAC systems. This is part of an on-going effort to develop a knowledge-based search interface to OPACs called the E-Referencer (Khoo et al., 1998, 1999; Poo et al., 2000). E-Referencer v. 2 that has been implemented applies a repertoire of initial search strategies and reformulation strategies to retrieve records from OPACs using the Z39.50 protocol, and also assists users in mapping query keywords to the Library of Congress subject headings."
    Source
    Electronic library. 22(2004) no.2, S.112-120
  3. Voorhees, E.M.: Implementing agglomerative hierarchic clustering algorithms for use in document retrieval (1986) 0.02
    0.0243019 = product of:
      0.0486038 = sum of:
        0.0486038 = product of:
          0.0972076 = sum of:
            0.0972076 = weight(_text_:22 in 402) [ClassicSimilarity], result of:
              0.0972076 = score(doc=402,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.61904186 = fieldWeight in 402, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=402)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Information processing and management. 22(1986) no.6, S.465-476
  4. Smeaton, A.F.; Rijsbergen, C.J. van: ¬The retrieval effects of query expansion on a feedback document retrieval system (1983) 0.02
    0.021264162 = product of:
      0.042528324 = sum of:
        0.042528324 = product of:
          0.08505665 = sum of:
            0.08505665 = weight(_text_:22 in 2134) [ClassicSimilarity], result of:
              0.08505665 = score(doc=2134,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.5416616 = fieldWeight in 2134, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=2134)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    30. 3.2001 13:32:22
  5. Back, J.: ¬An evaluation of relevancy ranking techniques used by Internet search engines (2000) 0.02
    0.021264162 = product of:
      0.042528324 = sum of:
        0.042528324 = product of:
          0.08505665 = sum of:
            0.08505665 = weight(_text_:22 in 3445) [ClassicSimilarity], result of:
              0.08505665 = score(doc=3445,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.5416616 = fieldWeight in 3445, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3445)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    25. 8.2005 17:42:22
  6. Ding, Y.: Topic-based PageRank on author cocitation networks (2011) 0.02
    0.020225393 = product of:
      0.040450785 = sum of:
        0.040450785 = product of:
          0.08090157 = sum of:
            0.08090157 = weight(_text_:e.g in 4348) [ClassicSimilarity], result of:
              0.08090157 = score(doc=4348,freq=2.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.34583107 = fieldWeight in 4348, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4348)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Ranking authors is vital for identifying a researcher's impact and standing within a scientific field. There are many different ranking methods (e.g., citations, publications, h-index, PageRank, and weighted PageRank), but most of them are topic-independent. This paper proposes topic-dependent ranks based on the combination of a topic model and a weighted PageRank algorithm. The author-conference-topic (ACT) model was used to extract topic distribution of individual authors. Two ways for combining the ACT model with the PageRank algorithm are proposed: simple combination (I_PR) or using a topic distribution as a weighted vector for PageRank (PR_t). Information retrieval was chosen as the test field and representative authors for different topics at different time phases were identified. Principal component analysis (PCA) was applied to analyze the ranking difference between I_PR and PR_t.
  7. Fuhr, N.: Ranking-Experimente mit gewichteter Indexierung (1986) 0.02
    0.018226424 = product of:
      0.03645285 = sum of:
        0.03645285 = product of:
          0.0729057 = sum of:
            0.0729057 = weight(_text_:22 in 58) [ClassicSimilarity], result of:
              0.0729057 = score(doc=58,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.46428138 = fieldWeight in 58, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=58)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    14. 6.2015 22:12:44
  8. Fuhr, N.: Rankingexperimente mit gewichteter Indexierung (1986) 0.02
    0.018226424 = product of:
      0.03645285 = sum of:
        0.03645285 = product of:
          0.0729057 = sum of:
            0.0729057 = weight(_text_:22 in 2051) [ClassicSimilarity], result of:
              0.0729057 = score(doc=2051,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.46428138 = fieldWeight in 2051, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=2051)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    14. 6.2015 22:12:56
  9. Wan, X.; Yang, J.; Xiao, J.: Towards a unified approach to document similarity search using manifold-ranking of blocks (2008) 0.02
    0.016854495 = product of:
      0.03370899 = sum of:
        0.03370899 = product of:
          0.06741798 = sum of:
            0.06741798 = weight(_text_:e.g in 2081) [ClassicSimilarity], result of:
              0.06741798 = score(doc=2081,freq=2.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.28819257 = fieldWeight in 2081, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2081)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Document similarity search (i.e. query by example) aims to retrieve a ranked list of documents similar to a query document in a text corpus or on the Web. Most existing approaches to similarity search first compute the pairwise similarity score between each document and the query using a retrieval function or similarity measure (e.g. Cosine), and then rank the documents by the similarity scores. In this paper, we propose a novel retrieval approach based on manifold-ranking of document blocks (i.e. a block of coherent text about a subtopic) to re-rank a small set of documents initially retrieved by some existing retrieval function. The proposed approach can make full use of the intrinsic global manifold structure of the document blocks by propagating the ranking scores between the blocks on a weighted graph. First, the TextTiling algorithm and the VIPS algorithm are respectively employed to segment text documents and web pages into blocks. Then, each block is assigned with a ranking score by the manifold-ranking algorithm. Lastly, a document gets its final ranking score by fusing the scores of its blocks. Experimental results on the TDT data and the ODP data demonstrate that the proposed approach can significantly improve the retrieval performances over baseline approaches. Document block is validated to be a better unit than the whole document in the manifold-ranking process.
  10. Wiggers, G.; Verberne, S.; Loon, W. van; Zwenne, G.-J.: Bibliometric-enhanced legal information retrieval : combining usage and citations as flavors of impact relevance (2023) 0.02
    0.016854495 = product of:
      0.03370899 = sum of:
        0.03370899 = product of:
          0.06741798 = sum of:
            0.06741798 = weight(_text_:e.g in 1022) [ClassicSimilarity], result of:
              0.06741798 = score(doc=1022,freq=2.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.28819257 = fieldWeight in 1022, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1022)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Bibliometric-enhanced information retrieval uses bibliometrics (e.g., citations) to improve ranking algorithms. Using a data-driven approach, this article describes the development of a bibliometric-enhanced ranking algorithm for legal information retrieval, and the evaluation thereof. We statistically analyze the correlation between usage of documents and citations over time, using data from a commercial legal search engine. We then propose a bibliometric boost function that combines usage of documents with citation counts. The core of this function is an impact variable based on usage and citations that increases in influence as citations and usage counts become more reliable over time. We evaluate our ranking function by comparing search sessions before and after the introduction of the new ranking in the search engine. Using a cost model applied to 129,571 sessions before and 143,864 sessions after the intervention, we show that our bibliometric-enhanced ranking algorithm reduces the time of a search session of legal professionals by 2 to 3% on average for use cases other than known-item retrieval or updating behavior. Given the high hourly tariff of legal professionals and the limited time they can spend on research, this is expected to lead to increased efficiency, especially for users with extremely long search sessions.
  11. Cross-language information retrieval (1998) 0.01
    0.014596419 = product of:
      0.029192839 = sum of:
        0.029192839 = product of:
          0.058385678 = sum of:
            0.058385678 = weight(_text_:e.g in 6299) [ClassicSimilarity], result of:
              0.058385678 = score(doc=6299,freq=6.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.24958208 = fieldWeight in 6299, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=6299)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    Rez. in: Machine translation review: 1999, no.10, S.26-27 (D. Lewis): "Cross Language Information Retrieval (CLIR) addresses the growing need to access large volumes of data across language boundaries. The typical requirement is for the user to input a free form query, usually a brief description of a topic, into a search or retrieval engine which returns a list, in ranked order, of documents or web pages that are relevant to the topic. The search engine matches the terms in the query to indexed terms, usually keywords previously derived from the target documents. Unlike monolingual information retrieval, CLIR requires query terms in one language to be matched to indexed terms in another. Matching can be done by bilingual dictionary lookup, full machine translation, or by applying statistical methods. A query's success is measured in terms of recall (how many potentially relevant target documents are found) and precision (what proportion of documents found are relevant). Issues in CLIR are how to translate query terms into index terms, how to eliminate alternative translations (e.g. to decide that French 'traitement' in a query means 'treatment' and not 'salary'), and how to rank or weight translation alternatives that are retained (e.g. how to order the French terms 'aventure', 'business', 'affaire', and 'liaison' as relevant translations of English 'affair'). Grefenstette provides a lucid and useful overview of the field and the problems. The volume brings together a number of experiments and projects in CLIR. Mark Davies (New Mexico State University) describes Recuerdo, a Spanish retrieval engine which reduces translation ambiguities by scanning indexes for parallel texts; it also uses either a bilingual dictionary or direct equivalents from a parallel corpus in order to compare results for queries on parallel texts. Lisa Ballesteros and Bruce Croft (University of Massachusetts) use a 'local feedback' technique which automatically enhances a query by adding extra terms to it both before and after translation; such terms can be derived from documents known to be relevant to the query.
    The retrieved output from a query including the phrase 'big rockets' may be, for instance, a sentence containing 'giant rocket' which is semantically ranked above 'military ocket'. David Hull (Xerox Research Centre, Grenoble) describes an implementation of a weighted Boolean model for Spanish-English CLIR. Users construct Boolean-type queries, weighting each term in the query, which is then translated by an on-line dictionary before being applied to the database. Comparisons with the performance of unweighted free-form queries ('vector space' models) proved encouraging. Two contributions consider the evaluation of CLIR systems. In order to by-pass the time-consuming and expensive process of assembling a standard collection of documents and of user queries against which the performance of an CLIR system is manually assessed, Páriac Sheridan et al (ETH Zurich) propose a method based on retrieving 'seed documents'. This involves identifying a unique document in a database (the 'seed document') and, for a number of queries, measuring how fast it is retrieved. The authors have also assembled a large database of multilingual news documents for testing purposes. By storing the (fairly short) documents in a structured form tagged with descriptor codes (e.g. for topic, country and area), the test suite is easily expanded while remaining consistent for the purposes of testing. Douglas Ouard and Bonne Dorr (University of Maryland) describe an evaluation methodology which appears to apply LSI techniques in order to filter and rank incoming documents designed for testing CLIR systems. The volume provides the reader an excellent overview of several projects in CLIR. It is well supported with references and is intended as a secondary text for researchers and practitioners. It highlights the need for a good, general tutorial introduction to the field."
  12. Henzinger, M.R.: Link analysis in Web information retrieval (2000) 0.01
    0.013483594 = product of:
      0.026967188 = sum of:
        0.026967188 = product of:
          0.053934377 = sum of:
            0.053934377 = weight(_text_:e.g in 801) [ClassicSimilarity], result of:
              0.053934377 = score(doc=801,freq=2.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.23055404 = fieldWeight in 801, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.03125 = fieldNorm(doc=801)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    The goal of information retrieval is to find all documents relevant for a user query in a collection of documents. Decades of research in information retrieval were successful in developing and refining techniques that are solely word-based (see e.g., [2]). With the advent of the web new sources of information became available, one of them being the hyperlinks between documents and records of user behavior. To be precise, hypertexts (i.e., collections of documents connected by hyperlinks) have existed and have been studied for a long time. What was new was the large number of hyperlinks created by independent individuals. Hyperlinks provide a valuable source of information for web information retrieval as we will show in this article. This area of information retrieval is commonly called link analysis. Why would one expect hyperlinks to be useful? Ahyperlink is a reference of a web page B that is contained in a web page A. When the hyperlink is clicked on in a web browser, the browser displays page B. This functionality alone is not helpful for web information retrieval. However, the way hyperlinks are typically used by authors of web pages can give them valuable information content. Typically, authors create links because they think they will be useful for the readers of the pages. Thus, links are usually either navigational aids that, for example, bring the reader back to the homepage of the site, or links that point to pages whose content augments the content of the current page. The second kind of links tend to point to high-quality pages that might be on the same topic as the page containing the link.
  13. White, R.W.; Marchionini, G.: Examining the effectiveness of real-time query expansion (2007) 0.01
    0.013483594 = product of:
      0.026967188 = sum of:
        0.026967188 = product of:
          0.053934377 = sum of:
            0.053934377 = weight(_text_:e.g in 913) [ClassicSimilarity], result of:
              0.053934377 = score(doc=913,freq=2.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.23055404 = fieldWeight in 913, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.03125 = fieldNorm(doc=913)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Interactive query expansion (IQE) (c.f. [Efthimiadis, E. N. (1996). Query expansion. Annual Review of Information Systems and Technology, 31, 121-187]) is a potentially useful technique to help searchers formulate improved query statements, and ultimately retrieve better search results. However, IQE is seldom used in operational settings. Two possible explanations for this are that IQE is generally not integrated into searchers' established information-seeking behaviors (e.g., examining lists of documents), and it may not be offered at a time in the search when it is needed most (i.e., during the initial query formulation). These challenges can be addressed by coupling IQE more closely with familiar search activities, rather than as a separate functionality that searchers must learn. In this article we introduce and evaluate a variant of IQE known as Real-Time Query Expansion (RTQE). As a searcher enters their query in a text box at the interface, RTQE provides a list of suggested additional query terms, in effect offering query expansion options while the query is formulated. To investigate how the technique is used - and when it may be useful - we conducted a user study comparing three search interfaces: a baseline interface with no query expansion support; an interface that provides expansion options during query entry, and a third interface that provides options after queries have been submitted to a search system. The results show that offering RTQE leads to better quality initial queries, more engagement in the search, and an increase in the uptake of query expansion. However, the results also imply that care must be taken when implementing RTQE interactively. Our findings have broad implications for how IQE should be offered, and form part of our research on the development of techniques to support the increased use of query expansion.
  14. MacFarlane, A.; Robertson, S.E.; McCann, J.A.: Parallel computing for passage retrieval (2004) 0.01
    0.01215095 = product of:
      0.0243019 = sum of:
        0.0243019 = product of:
          0.0486038 = sum of:
            0.0486038 = weight(_text_:22 in 5108) [ClassicSimilarity], result of:
              0.0486038 = score(doc=5108,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.30952093 = fieldWeight in 5108, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5108)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    20. 1.2007 18:30:22
  15. Faloutsos, C.: Signature files (1992) 0.01
    0.01215095 = product of:
      0.0243019 = sum of:
        0.0243019 = product of:
          0.0486038 = sum of:
            0.0486038 = weight(_text_:22 in 3499) [ClassicSimilarity], result of:
              0.0486038 = score(doc=3499,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.30952093 = fieldWeight in 3499, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3499)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    7. 5.1999 15:22:48
  16. Losada, D.E.; Barreiro, A.: Emebedding term similarity and inverse document frequency into a logical model of information retrieval (2003) 0.01
    0.01215095 = product of:
      0.0243019 = sum of:
        0.0243019 = product of:
          0.0486038 = sum of:
            0.0486038 = weight(_text_:22 in 1422) [ClassicSimilarity], result of:
              0.0486038 = score(doc=1422,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.30952093 = fieldWeight in 1422, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1422)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 3.2003 19:27:23
  17. Bornmann, L.; Mutz, R.: From P100 to P100' : a new citation-rank approach (2014) 0.01
    0.01215095 = product of:
      0.0243019 = sum of:
        0.0243019 = product of:
          0.0486038 = sum of:
            0.0486038 = weight(_text_:22 in 1431) [ClassicSimilarity], result of:
              0.0486038 = score(doc=1431,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.30952093 = fieldWeight in 1431, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1431)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 8.2014 17:05:18
  18. Tober, M.; Hennig, L.; Furch, D.: SEO Ranking-Faktoren und Rang-Korrelationen 2014 : Google Deutschland (2014) 0.01
    0.01215095 = product of:
      0.0243019 = sum of:
        0.0243019 = product of:
          0.0486038 = sum of:
            0.0486038 = weight(_text_:22 in 1484) [ClassicSimilarity], result of:
              0.0486038 = score(doc=1484,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.30952093 = fieldWeight in 1484, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1484)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    13. 9.2014 14:45:22
  19. Ravana, S.D.; Rajagopal, P.; Balakrishnan, V.: Ranking retrieval systems using pseudo relevance judgments (2015) 0.01
    0.010740024 = product of:
      0.021480048 = sum of:
        0.021480048 = product of:
          0.042960096 = sum of:
            0.042960096 = weight(_text_:22 in 2591) [ClassicSimilarity], result of:
              0.042960096 = score(doc=2591,freq=4.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.27358043 = fieldWeight in 2591, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2591)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    20. 1.2015 18:30:22
    18. 9.2018 18:22:56
  20. Chang, C.-H.; Hsu, C.-C.: Integrating query expansion and conceptual relevance feedback for personalized Web information retrieval (1998) 0.01
    0.010632081 = product of:
      0.021264162 = sum of:
        0.021264162 = product of:
          0.042528324 = sum of:
            0.042528324 = weight(_text_:22 in 1319) [ClassicSimilarity], result of:
              0.042528324 = score(doc=1319,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.2708308 = fieldWeight in 1319, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1319)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    1. 8.1996 22:08:06

Years

Languages

  • e 31
  • d 4

Types

  • a 32
  • m 2
  • r 1
  • s 1
  • More… Less…