Search (80 results, page 1 of 4)

  • × type_ss:"el"
  • × theme_ss:"Semantic Web"
  1. Heflin, J.; Hendler, J.: Semantic interoperability on the Web (2000) 0.03
    0.026575929 = product of:
      0.053151857 = sum of:
        0.053151857 = sum of:
          0.009471525 = weight(_text_:a in 759) [ClassicSimilarity], result of:
            0.009471525 = score(doc=759,freq=8.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.17835285 = fieldWeight in 759, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0546875 = fieldNorm(doc=759)
          0.043680333 = weight(_text_:22 in 759) [ClassicSimilarity], result of:
            0.043680333 = score(doc=759,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.2708308 = fieldWeight in 759, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=759)
      0.5 = coord(1/2)
    
    Abstract
    XML will have a profound impact on the way data is exchanged on the Internet. An important feature of this language is the separation of content from presentation, which makes it easier to select and/or reformat the data. However, due to the likelihood of numerous industry and domain specific DTDs, those who wish to integrate information will still be faced with the problem of semantic interoperability. In this paper we discuss why this problem is not solved by XML, and then discuss why the Resource Description Framework is only a partial solution. We then present the SHOE language, which we feel has many of the features necessary to enable a semantic web, and describe an existing set of tools that make it easy to use the language.
    Date
    11. 5.2013 19:22:18
    Type
    a
  2. Dextre Clarke, S.G.: Challenges and opportunities for KOS standards (2007) 0.02
    0.021840166 = product of:
      0.043680333 = sum of:
        0.043680333 = product of:
          0.087360665 = sum of:
            0.087360665 = weight(_text_:22 in 4643) [ClassicSimilarity], result of:
              0.087360665 = score(doc=4643,freq=2.0), product of:
                0.16128273 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046056706 = queryNorm
                0.5416616 = fieldWeight in 4643, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4643)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 9.2007 15:41:14
  3. Hollink, L.; Assem, M. van: Estimating the relevance of search results in the Culture-Web : a study of semantic distance measures (2010) 0.02
    0.021590449 = product of:
      0.043180898 = sum of:
        0.043180898 = sum of:
          0.005740611 = weight(_text_:a in 4649) [ClassicSimilarity], result of:
            0.005740611 = score(doc=4649,freq=4.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.10809815 = fieldWeight in 4649, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=4649)
          0.037440285 = weight(_text_:22 in 4649) [ClassicSimilarity], result of:
            0.037440285 = score(doc=4649,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.23214069 = fieldWeight in 4649, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=4649)
      0.5 = coord(1/2)
    
    Abstract
    More and more cultural heritage institutions publish their collections, vocabularies and metadata on the Web. The resulting Web of linked cultural data opens up exciting new possibilities for searching and browsing through these cultural heritage collections. We report on ongoing work in which we investigate the estimation of relevance in this Web of Culture. We study existing measures of semantic distance and how they apply to two use cases. The use cases relate to the structured, multilingual and multimodal nature of the Culture Web. We distinguish between measures using the Web, such as Google distance and PMI, and measures using the Linked Data Web, i.e. the semantic structure of metadata vocabularies. We perform a small study in which we compare these semantic distance measures to human judgements of relevance. Although it is too early to draw any definitive conclusions, the study provides new insights into the applicability of semantic distance measures to the Web of Culture, and clear starting points for further research.
    Date
    26.12.2011 13:40:22
  4. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.02
    0.018982807 = product of:
      0.037965614 = sum of:
        0.037965614 = sum of:
          0.006765375 = weight(_text_:a in 4553) [ClassicSimilarity], result of:
            0.006765375 = score(doc=4553,freq=8.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.12739488 = fieldWeight in 4553, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4553)
          0.03120024 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
            0.03120024 = score(doc=4553,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.19345059 = fieldWeight in 4553, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4553)
      0.5 = coord(1/2)
    
    Abstract
    Semantic Web knowledge representation standards, and in particular RDF and OWL, often come endowed with a formal semantics which is considered to be of fundamental importance for the field. Reasoning, i.e., the drawing of logical inferences from knowledge expressed in such standards, is traditionally based on logical deductive methods and algorithms which can be proven to be sound and complete and terminating, i.e. correct in a very strong sense. For various reasons, though, in particular the scalability issues arising from the ever increasing amounts of Semantic Web data available and the inability of deductive algorithms to deal with noise in the data, it has been argued that alternative means of reasoning should be investigated which bear high promise for high scalability and better robustness. From this perspective, deductive algorithms can be considered the gold standard regarding correctness against which alternative methods need to be tested. In this paper, we show that it is possible to train a Deep Learning system on RDF knowledge graphs, such that it is able to perform reasoning over new RDF knowledge graphs, with high precision and recall compared to the deductive gold standard.
    Date
    16.11.2018 14:22:01
    Type
    a
  5. Broughton, V.: Automatic metadata generation : Digital resource description without human intervention (2007) 0.02
    0.018720143 = product of:
      0.037440285 = sum of:
        0.037440285 = product of:
          0.07488057 = sum of:
            0.07488057 = weight(_text_:22 in 6048) [ClassicSimilarity], result of:
              0.07488057 = score(doc=6048,freq=2.0), product of:
                0.16128273 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046056706 = queryNorm
                0.46428138 = fieldWeight in 6048, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6048)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 9.2007 15:41:14
  6. Tudhope, D.: Knowledge Organization System Services : brief review of NKOS activities and possibility of KOS registries (2007) 0.02
    0.018720143 = product of:
      0.037440285 = sum of:
        0.037440285 = product of:
          0.07488057 = sum of:
            0.07488057 = weight(_text_:22 in 100) [ClassicSimilarity], result of:
              0.07488057 = score(doc=100,freq=2.0), product of:
                0.16128273 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046056706 = queryNorm
                0.46428138 = fieldWeight in 100, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=100)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 9.2007 15:41:14
  7. Eckert, K.: SKOS: eine Sprache für die Übertragung von Thesauri ins Semantic Web (2011) 0.01
    0.012480095 = product of:
      0.02496019 = sum of:
        0.02496019 = product of:
          0.04992038 = sum of:
            0.04992038 = weight(_text_:22 in 4331) [ClassicSimilarity], result of:
              0.04992038 = score(doc=4331,freq=2.0), product of:
                0.16128273 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046056706 = queryNorm
                0.30952093 = fieldWeight in 4331, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4331)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    15. 3.2011 19:21:22
  8. OWL Web Ontology Language Test Cases (2004) 0.01
    0.012480095 = product of:
      0.02496019 = sum of:
        0.02496019 = product of:
          0.04992038 = sum of:
            0.04992038 = weight(_text_:22 in 4685) [ClassicSimilarity], result of:
              0.04992038 = score(doc=4685,freq=2.0), product of:
                0.16128273 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046056706 = queryNorm
                0.30952093 = fieldWeight in 4685, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4685)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    14. 8.2011 13:33:22
  9. Mayfield, J.; Finin, T.: Information retrieval on the Semantic Web : integrating inference and retrieval 0.01
    0.010920083 = product of:
      0.021840166 = sum of:
        0.021840166 = product of:
          0.043680333 = sum of:
            0.043680333 = weight(_text_:22 in 4330) [ClassicSimilarity], result of:
              0.043680333 = score(doc=4330,freq=2.0), product of:
                0.16128273 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2708308 = fieldWeight in 4330, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4330)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    12. 2.2011 17:35:22
  10. Firnkes, M.: Schöne neue Welt : der Content der Zukunft wird von Algorithmen bestimmt (2015) 0.01
    0.009360071 = product of:
      0.018720143 = sum of:
        0.018720143 = product of:
          0.037440285 = sum of:
            0.037440285 = weight(_text_:22 in 2118) [ClassicSimilarity], result of:
              0.037440285 = score(doc=2118,freq=2.0), product of:
                0.16128273 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046056706 = queryNorm
                0.23214069 = fieldWeight in 2118, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2118)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    5. 7.2015 22:02:31
  11. Ding, L.; Finin, T.; Joshi, A.; Peng, Y.; Cost, R.S.; Sachs, J.; Pan, R.; Reddivari, P.; Doshi, V.: Swoogle : a Semantic Web search and metadata engine (2004) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 4704) [ClassicSimilarity], result of:
              0.011481222 = score(doc=4704,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 4704, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4704)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Swoogle is a crawler-based indexing and retrieval system for the Semantic Web, i.e., for Web documents in RDF or OWL. It extracts metadata for each discovered document, and computes relations between documents. Discovered documents are also indexed by an information retrieval system which can use either character N-Gram or URIrefs as keywords to find relevant documents and to compute the similarity among a set of documents. One of the interesting properties we compute is rank, a measure of the importance of a Semantic Web document.
    Content
    Vgl. unter: http://www.dblab.ntua.gr/~bikakis/LD/5.pdf Vgl. auch: http://swoogle.umbc.edu/. Vgl. auch: http://ebiquity.umbc.edu/paper/html/id/183/. Vgl. auch: Radhakrishnan, A.: Swoogle : An Engine for the Semantic Web unter: http://www.searchenginejournal.com/swoogle-an-engine-for-the-semantic-web/5469/.
    Type
    a
  12. Mehler, A.; Waltinger, U.: Automatic enrichment of metadata (2009) 0.00
    0.00270615 = product of:
      0.0054123 = sum of:
        0.0054123 = product of:
          0.0108246 = sum of:
            0.0108246 = weight(_text_:a in 4840) [ClassicSimilarity], result of:
              0.0108246 = score(doc=4840,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20383182 = fieldWeight in 4840, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4840)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this talk we present a retrieval model based on social ontologies. More specifically, we utilize the Wikipedia category system in order to perform semantic searches. That is, textual input is used to build queries by means of which documents are retrieved which do not necessarily contain any query term but are semantically related to the input text by virtue of their content. We present a desktop which utilizes this search facility in a web-based environment - the so called eHumanities Desktop.
  13. Carbonaro, A.; Santandrea, L.: ¬A general Semantic Web approach for data analysis on graduates statistics 0.00
    0.0026742492 = product of:
      0.0053484985 = sum of:
        0.0053484985 = product of:
          0.010696997 = sum of:
            0.010696997 = weight(_text_:a in 5309) [ClassicSimilarity], result of:
              0.010696997 = score(doc=5309,freq=20.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20142901 = fieldWeight in 5309, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5309)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Currently, several datasets released in a Linked Open Data format are available at a national and international level, but the lack of shared strategies concerning the definition of concepts related to the statistical publishing community makes difficult a comparison among given facts starting from different data sources. In order to guarantee a shared representation framework for what concerns the dissemination of statistical concepts about graduates, we developed SW4AL, an ontology-based system for graduate's surveys domain. The developed system transforms low-level data into an enriched information model and is based on the AlmaLaurea surveys covering more than 90% of Italian graduates. SW4AL: i) semantically describes the different peculiarities of the graduates; ii) promotes the structured definition of the AlmaLaurea data and the following publication in the Linked Open Data context; iii) provides their reuse in the open data scope; iv) enables logical reasoning about knowledge representation. SW4AL establishes a common semantic for addressing the concept of graduate's surveys domain by proposing the creation of a SPARQL endpoint and a Web based interface for the query and the visualization of the structured data.
    Type
    a
  14. Miles, A.; Matthews, B.; Beckett, D.; Brickley, D.; Wilson, M.; Rogers, N.: SKOS: A language to describe simple knowledge structures for the web (2005) 0.00
    0.0026473717 = product of:
      0.0052947435 = sum of:
        0.0052947435 = product of:
          0.010589487 = sum of:
            0.010589487 = weight(_text_:a in 517) [ClassicSimilarity], result of:
              0.010589487 = score(doc=517,freq=40.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19940455 = fieldWeight in 517, product of:
                  6.3245554 = tf(freq=40.0), with freq of:
                    40.0 = termFreq=40.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=517)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    "Textual content-based search engines for the web have a number of limitations. Firstly, many web resources have little or no textual content (images, audio or video streams etc.) Secondly, precision is low where natural language terms have overloaded meaning (e.g. 'bank', 'watch', 'chip' etc.) Thirdly, recall is incomplete where the search does not take account of synonyms or quasi-synonyms. Fourthly, there is no basis for assisting a user in modifying (expanding, refining, translating) a search based on the meaning of the original search. Fifthly, there is no basis for searching across natural languages, or framing search queries in terms of symbolic languages. The Semantic Web is a framework for creating, managing, publishing and searching semantically rich metadata for web resources. Annotating web resources with precise and meaningful statements about conceptual aspects of their content provides a basis for overcoming all of the limitations of textual content-based search engines listed above. Creating this type of metadata requires that metadata generators are able to refer to shared repositories of meaning: 'vocabularies' of concepts that are common to a community, and describe the domain of interest for that community.
    This type of effort is common in the digital library community, where a group of experts will interact with a user community to create a thesaurus for a specific domain (e.g. the Art & Architecture Thesaurus AAT AAT) or an overarching classification scheme (e.g. the Dewey Decimal Classification). A similar type of activity is being undertaken more recently in a less centralised manner by web communities, producing for example the DMOZ web directory DMOZ, or the Topic Exchange for weblog topics Topic Exchange. The web, including the semantic web, provides a medium within which communities can interact and collaboratively build and use vocabularies of concepts. A simple language is required that allows these communities to express the structure and content of their vocabularies in a machine-understandable way, enabling exchange and reuse. The Resource Description Framework (RDF) is an ideal language for making statements about web resources and publishing metadata. However, RDF provides only the low level semantics required to form metadata statements. RDF vocabularies must be built on top of RDF to support the expression of more specific types of information within metadata. Ontology languages such as OWL OWL add a layer of expressive power to RDF, and provide powerful tools for defining complex conceptual structures, which can be used to generate rich metadata. However, the class-oriented, logically precise modelling required to construct useful web ontologies is demanding in terms of expertise, effort, and therefore cost. In many cases this type of modelling may be superfluous or unsuited to requirements. Therefore there is a need for a language for expressing vocabularies of concepts for use in semantically rich metadata, that is powerful enough to support semantically enhanced search, but simple enough to be undemanding in terms of the cost and expertise required to use it."
  15. Miller, E.; Schloss. B.; Lassila, O.; Swick, R.R.: Resource Description Framework (RDF) : model and syntax (1997) 0.00
    0.0025803389 = product of:
      0.0051606777 = sum of:
        0.0051606777 = product of:
          0.010321355 = sum of:
            0.010321355 = weight(_text_:a in 5903) [ClassicSimilarity], result of:
              0.010321355 = score(doc=5903,freq=38.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19435552 = fieldWeight in 5903, product of:
                  6.164414 = tf(freq=38.0), with freq of:
                    38.0 = termFreq=38.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=5903)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    RDF - the Resource Description Framework - is a foundation for processing metadata; it provides interoperability between applications that exchange machine-understandable information on the Web. RDF emphasizes facilities to enable automated processing of Web resources. RDF metadata can be used in a variety of application areas; for example: in resource discovery to provide better search engine capabilities; in cataloging for describing the content and content relationships available at a particular Web site, page, or digital library; by intelligent software agents to facilitate knowledge sharing and exchange; in content rating; in describing collections of pages that represent a single logical "document"; for describing intellectual property rights of Web pages, and in many others. RDF with digital signatures will be key to building the "Web of Trust" for electronic commerce, collaboration, and other applications. Metadata is "data about data" or specifically in the context of RDF "data describing web resources." The distinction between "data" and "metadata" is not an absolute one; it is a distinction created primarily by a particular application. Many times the same resource will be interpreted in both ways simultaneously. RDF encourages this view by using XML as the encoding syntax for the metadata. The resources being described by RDF are, in general, anything that can be named via a URI. The broad goal of RDF is to define a mechanism for describing resources that makes no assumptions about a particular application domain, nor defines the semantics of any application domain. The definition of the mechanism should be domain neutral, yet the mechanism should be suitable for describing information about any domain. This document introduces a model for representing RDF metadata and one syntax for expressing and transporting this metadata in a manner that maximizes the interoperability of independently developed web servers and clients. The syntax described in this document is best considered as a "serialization syntax" for the underlying RDF representation model. The serialization syntax is XML, XML being the W3C's work-in-progress to define a richer Web syntax for a variety of applications. RDF and XML are complementary; there will be alternate ways to represent the same RDF data model, some more suitable for direct human authoring. Future work may lead to including such alternatives in this document.
    Content
    RDF Data Model At the core of RDF is a model for representing named properties and their values. These properties serve both to represent attributes of resources (and in this sense correspond to usual attribute-value-pairs) and to represent relationships between resources. The RDF data model is a syntax-independent way of representing RDF statements. RDF statements that are syntactically very different could mean the same thing. This concept of equivalence in meaning is very important when performing queries, aggregation and a number of other tasks at which RDF is aimed. The equivalence is defined in a clean machine understandable way. Two pieces of RDF are equivalent if and only if their corresponding data model representations are the same. Table of contents 1. Introduction 2. RDF Data Model 3. RDF Grammar 4. Signed RDF 5. Examples 6. Appendix A: Brief Explanation of XML Namespaces
  16. Isaac, A.: Aligning thesauri for an integrated access to Cultural Heritage Resources (2007) 0.00
    0.0025115174 = product of:
      0.0050230348 = sum of:
        0.0050230348 = product of:
          0.0100460695 = sum of:
            0.0100460695 = weight(_text_:a in 553) [ClassicSimilarity], result of:
              0.0100460695 = score(doc=553,freq=36.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18917176 = fieldWeight in 553, product of:
                  6.0 = tf(freq=36.0), with freq of:
                    36.0 = termFreq=36.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=553)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Currently, a number of efforts are being carried out to integrate collections from different institutions and containing heterogeneous material. Examples of such projects are The European Library [1] and the Memory of the Netherlands [2]. A crucial point for the success of these is the availability to provide a unified access on top of the different collections, e.g. using one single vocabulary for querying or browsing the objects they contain. This is made difficult by the fact that the objects from different collections are often described using different vocabularies - thesauri, classification schemes - and are therefore not interoperable at the semantic level. To solve this problem, one can turn to semantic links - mappings - between the elements of the different vocabularies. If one knows that a concept C from a vocabulary V is semantically equivalent to a concept to a concept D from vocabulary W, then an appropriate search engine can return all the objects that were indexed against D for a query for objects described using C. We thus have an access to other collections, using a single one vocabulary. This is however an ideal situation, and hard alignment work is required to reach it. Several projects in the past have tried to implement such a solution, like MACS [3] and Renardus [4]. They have demonstrated very interesting results, but also highlighted the difficulty of aligning manually all the different vocabularies involved in practical cases, which sometimes contain hundreds of thousands of concepts. To alleviate this problem, a number of tools have been proposed in order to provide with candidate mappings between two input vocabularies, making alignment a (semi-) automatic task. Recently, the Semantic Web community has produced a lot of these alignment tools'. Several techniques are found, depending on the material they exploit: labels of concepts, structure of vocabularies, collection objects and external knowledge sources. Throughout our presentation, we will present a concrete heterogeneity case where alignment techniques have been applied to build a (pilot) browser, developed in the context of the STITCH project [5]. This browser enables a unified access to two collections of illuminated manuscripts, using the description vocabulary used in the first collection, Mandragore [6], or the one used by the second, Iconclass [7]. In our talk, we will also make the point for using unified representations the vocabulary semantic and lexical information. Additionally to ease the use of the alignment tools that have these vocabularies as input, turning to a standard representation format helps designing applications that are more generic, like the browser we demonstrate. We give pointers to SKOS [8], an open and web-enabled format currently developed by the Semantic Web community.
  17. Suchanek, F.M.; Kasneci, G.; Weikum, G.: YAGO: a core of semantic knowledge unifying WordNet and Wikipedia (2007) 0.00
    0.0024857575 = product of:
      0.004971515 = sum of:
        0.004971515 = product of:
          0.00994303 = sum of:
            0.00994303 = weight(_text_:a in 3403) [ClassicSimilarity], result of:
              0.00994303 = score(doc=3403,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18723148 = fieldWeight in 3403, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3403)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We present YAGO, a light-weight and extensible ontology with high coverage and quality. YAGO builds on entities and relations and currently contains more than 1 million entities and 5 million facts. This includes the Is-A hierarchy as well as non-taxonomic relations between entities (such as hasWonPrize). The facts have been automatically extracted from Wikipedia and unified with WordNet, using a carefully designed combination of rule-based and heuristic methods described in this paper. The resulting knowledge base is a major step beyond WordNet: in quality by adding knowledge about individuals like persons, organizations, products, etc. with their semantic relationships - and in quantity by increasing the number of facts by more than an order of magnitude. Our empirical evaluation of fact correctness shows an accuracy of about 95%. YAGO is based on a logically clean model, which is decidable, extensible, and compatible with RDFS. Finally, we show how YAGO can be further extended by state-of-the-art information extraction techniques.
  18. OWL Web Ontology Language Semantics and Abstract Syntax (2004) 0.00
    0.0024857575 = product of:
      0.004971515 = sum of:
        0.004971515 = product of:
          0.00994303 = sum of:
            0.00994303 = weight(_text_:a in 4683) [ClassicSimilarity], result of:
              0.00994303 = score(doc=4683,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18723148 = fieldWeight in 4683, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4683)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This description of OWL, the Web Ontology Language being designed by the W3C Web Ontology Working Group, contains a high-level abstract syntax for both OWL DL and OWL Lite, sublanguages of OWL. A model-theoretic semantics is given to provide a formal meaning for OWL ontologies written in this abstract syntax. A model-theoretic semantics in the form of an extension to the RDF semantics is also given to provide a formal meaning for OWL ontologies as RDF graphs (OWL Full). A mapping from the abstract syntax to RDF graphs is given and the two model theories are shown to have the same consequences on OWL ontologies that can be written in the abstract syntax.
  19. SKOS Simple Knowledge Organization System Reference : W3C Recommendation 18 August 2009 (2009) 0.00
    0.0024857575 = product of:
      0.004971515 = sum of:
        0.004971515 = product of:
          0.00994303 = sum of:
            0.00994303 = weight(_text_:a in 4688) [ClassicSimilarity], result of:
              0.00994303 = score(doc=4688,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18723148 = fieldWeight in 4688, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4688)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This document defines the Simple Knowledge Organization System (SKOS), a common data model for sharing and linking knowledge organization systems via the Web. Many knowledge organization systems, such as thesauri, taxonomies, classification schemes and subject heading systems, share a similar structure, and are used in similar applications. SKOS captures much of this similarity and makes it explicit, to enable data and technology sharing across diverse applications. The SKOS data model provides a standard, low-cost migration path for porting existing knowledge organization systems to the Semantic Web. SKOS also provides a lightweight, intuitive language for developing and sharing new knowledge organization systems. It may be used on its own, or in combination with formal knowledge representation languages such as the Web Ontology language (OWL). This document is the normative specification of the Simple Knowledge Organization System. It is intended for readers who are involved in the design and implementation of information systems, and who already have a good understanding of Semantic Web technology, especially RDF and OWL. For an informative guide to using SKOS, see the [SKOS-PRIMER].
    Editor
    Miles, A. u. S. Bechhofer
  20. Glimm, B.; Hogan, A.; Krötzsch, M.; Polleres, A.: OWL: Yet to arrive on the Web of Data? (2012) 0.00
    0.0024857575 = product of:
      0.004971515 = sum of:
        0.004971515 = product of:
          0.00994303 = sum of:
            0.00994303 = weight(_text_:a in 4798) [ClassicSimilarity], result of:
              0.00994303 = score(doc=4798,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18723148 = fieldWeight in 4798, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4798)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Seven years on from OWL becoming a W3C recommendation, and two years on from the more recent OWL 2 W3C recommendation, OWL has still experienced only patchy uptake on the Web. Although certain OWL features (like owl:sameAs) are very popular, other features of OWL are largely neglected by publishers in the Linked Data world. This may suggest that despite the promise of easy implementations and the proposal of tractable profiles suggested in OWL's second version, there is still no "right" standard fragment for the Linked Data community. In this paper, we (1) analyse uptake of OWL on the Web of Data, (2) gain insights into the OWL fragment that is actually used/usable on the Web, where we arrive at the conclusion that this fragment is likely to be a simplified profile based on OWL RL, (3) propose and discuss such a new fragment, which we call OWL LD (for Linked Data).
    Type
    a

Years

Languages

  • e 71
  • d 6
  • f 1
  • More… Less…

Types