Search (85 results, page 1 of 5)

  • × author_ss:"Hjoerland, B."
  1. Nicolaisen, J.; Hjoerland, B.: ¬A rejoinder to Beghtol (2004) (2004) 0.02
    0.021139272 = product of:
      0.042278543 = sum of:
        0.042278543 = product of:
          0.063417815 = sum of:
            0.054610465 = weight(_text_:j in 3006) [ClassicSimilarity], result of:
              0.054610465 = score(doc=3006,freq=4.0), product of:
                0.109994456 = queryWeight, product of:
                  3.1774964 = idf(docFreq=5010, maxDocs=44218)
                  0.034616705 = queryNorm
                0.4964838 = fieldWeight in 3006, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1774964 = idf(docFreq=5010, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3006)
            0.008807353 = weight(_text_:a in 3006) [ClassicSimilarity], result of:
              0.008807353 = score(doc=3006,freq=6.0), product of:
                0.039914686 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.034616705 = queryNorm
                0.22065444 = fieldWeight in 3006, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3006)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Footnote
    Bezugnahme auf: Beghtol, C.: Response to Hjoerland and Nicolaisen. In: Knowledge organization. 31(2004) no.1, S.62-63 sowie: Hjoerland, B., J. Nicolaisen: Scientific and scholarly classifications are not "naïve": a comment to Beghtol (2003). In: Knowledge organization. 31(2004) no.1, S.55-61.
    Type
    a
  2. Hjoerland, B.; Christensen, F.S.: Work tasks and socio-cognitive relevance : a specific example (2002) 0.01
    0.0133165 = product of:
      0.026633 = sum of:
        0.026633 = product of:
          0.0399495 = sum of:
            0.007118898 = weight(_text_:a in 5237) [ClassicSimilarity], result of:
              0.007118898 = score(doc=5237,freq=8.0), product of:
                0.039914686 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.034616705 = queryNorm
                0.17835285 = fieldWeight in 5237, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5237)
            0.0328306 = weight(_text_:22 in 5237) [ClassicSimilarity], result of:
              0.0328306 = score(doc=5237,freq=2.0), product of:
                0.1212218 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.034616705 = queryNorm
                0.2708308 = fieldWeight in 5237, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5237)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Hjorland and Christensen provide an analyzed example in order to clarify their views on relevance. A physician's information seeking focus in dealing with mental illness is seen as largely determined by his social cognitive state, with complexity increasing as the individual's understanding of the topic deviates from mainstream thinking. The physician's viewpoint on the disease will influence terminology utilized, and an eclectic attitude toward the disease will result in more broad criteria of relevance. Relevance is seen as a tool toward meeting an individual goal.
    Date
    21. 7.2006 14:11:22
    Type
    a
  3. Hjoerland, B.: Theories of knowledge organization - theories of knowledge (2017) 0.01
    0.012130016 = product of:
      0.024260033 = sum of:
        0.024260033 = product of:
          0.036390048 = sum of:
            0.003559449 = weight(_text_:a in 3494) [ClassicSimilarity], result of:
              0.003559449 = score(doc=3494,freq=2.0), product of:
                0.039914686 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.034616705 = queryNorm
                0.089176424 = fieldWeight in 3494, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3494)
            0.0328306 = weight(_text_:22 in 3494) [ClassicSimilarity], result of:
              0.0328306 = score(doc=3494,freq=2.0), product of:
                0.1212218 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.034616705 = queryNorm
                0.2708308 = fieldWeight in 3494, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3494)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Pages
    S.22-36
    Type
    a
  4. Hjoerland, B.: ¬The importance of theories of knowledge : indexing and information retrieval as an example (2011) 0.01
    0.011871266 = product of:
      0.023742532 = sum of:
        0.023742532 = product of:
          0.035613798 = sum of:
            0.007473286 = weight(_text_:a in 4359) [ClassicSimilarity], result of:
              0.007473286 = score(doc=4359,freq=12.0), product of:
                0.039914686 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.034616705 = queryNorm
                0.18723148 = fieldWeight in 4359, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4359)
            0.028140513 = weight(_text_:22 in 4359) [ClassicSimilarity], result of:
              0.028140513 = score(doc=4359,freq=2.0), product of:
                0.1212218 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.034616705 = queryNorm
                0.23214069 = fieldWeight in 4359, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4359)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    A recent study in information science (IS), raises important issues concerning the value of human indexing and basic theories of indexing and information retrieval, as well as the use of quantitative and qualitative approaches in IS and the underlying theories of knowledge informing the field. The present article uses L&E as the point of departure for demonstrating in what way more social and interpretative understandings may provide fruitful improvements for research in indexing, knowledge organization, and information retrieval. The artcle is motivated by the observation that philosophical contributions tend to be ignored in IS if they are not directly formed as criticisms or invitations to dialogs. It is part of the author's ongoing publication of articles about philosophical issues in IS and it is intended to be followed by analyzes of other examples of contributions to core issues in IS. Although it is formulated as a criticism of a specific paper, it should be seen as part of a general discussion of the philosophical foundation of IS and as a support to the emerging social paradigm in this field.
    Date
    17. 3.2011 19:22:55
    Type
    a
  5. Hyldegaard, J.; Morch, F.; Hjoerland, B.: Information overload : den nye flaskehals i referencearbejdet (1993) 0.01
    0.010688208 = product of:
      0.021376416 = sum of:
        0.021376416 = product of:
          0.032064624 = sum of:
            0.027030803 = weight(_text_:j in 8297) [ClassicSimilarity], result of:
              0.027030803 = score(doc=8297,freq=2.0), product of:
                0.109994456 = queryWeight, product of:
                  3.1774964 = idf(docFreq=5010, maxDocs=44218)
                  0.034616705 = queryNorm
                0.24574696 = fieldWeight in 8297, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1774964 = idf(docFreq=5010, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=8297)
            0.0050338213 = weight(_text_:a in 8297) [ClassicSimilarity], result of:
              0.0050338213 = score(doc=8297,freq=4.0), product of:
                0.039914686 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.034616705 = queryNorm
                0.12611452 = fieldWeight in 8297, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=8297)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Report on the conference on Information Authority and user knowledge held in Boras Apr 93 and arranged by Gothenburg University's Centre for Library and Information Science and Studies and Boras Library High School. The main speaker, Patrick Wilson, spoke on consequences of information overload and rapid conceptual change. Johan Olaisen's talk on 'toward a theory of clarified subjectivity' started like Wilson's with the problem that users of information systems drown in trivialities. Lena Olsson's dealt with library work in practice and commented on the connection between cognitive authority and professional status of librarians. Discussions centered on the definition of information authority, and on overload as the driving force in IF development
    Type
    a
  6. Hjoerland, B.; Hartel, J.: Afterword: ontological, epistemological and sociological dimensions of domains (2003) 0.01
    0.010196751 = product of:
      0.020393502 = sum of:
        0.020393502 = product of:
          0.030590253 = sum of:
            0.027030803 = weight(_text_:j in 3014) [ClassicSimilarity], result of:
              0.027030803 = score(doc=3014,freq=2.0), product of:
                0.109994456 = queryWeight, product of:
                  3.1774964 = idf(docFreq=5010, maxDocs=44218)
                  0.034616705 = queryNorm
                0.24574696 = fieldWeight in 3014, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1774964 = idf(docFreq=5010, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3014)
            0.003559449 = weight(_text_:a in 3014) [ClassicSimilarity], result of:
              0.003559449 = score(doc=3014,freq=2.0), product of:
                0.039914686 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.034616705 = queryNorm
                0.089176424 = fieldWeight in 3014, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3014)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Type
    a
  7. Hjoerland, B.: Table of contents (ToC) (2022) 0.01
    0.010059052 = product of:
      0.020118104 = sum of:
        0.020118104 = product of:
          0.030177156 = sum of:
            0.0067267264 = weight(_text_:a in 1096) [ClassicSimilarity], result of:
              0.0067267264 = score(doc=1096,freq=14.0), product of:
                0.039914686 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.034616705 = queryNorm
                0.1685276 = fieldWeight in 1096, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1096)
            0.023450429 = weight(_text_:22 in 1096) [ClassicSimilarity], result of:
              0.023450429 = score(doc=1096,freq=2.0), product of:
                0.1212218 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.034616705 = queryNorm
                0.19345059 = fieldWeight in 1096, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1096)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    A table of contents (ToC) is a kind of document representation as well as a paratext and a kind of finding device to the document it represents. TOCs are very common in books and some other kinds of documents, but not in all kinds. This article discusses the definition and functions of ToC, normative guidelines for their design, and the history and forms of ToC in different kinds of documents and media. A main part of the article is about the role of ToC in information searching, in current awareness services and as items added to bibliographical records. The introduction and the conclusion focus on the core theoretical issues concerning ToCs. Should they be document-oriented or request-oriented, neutral, or policy-oriented, objective, or subjective? It is concluded that because of the special functions of ToCs, the arguments for the request-oriented (policy-oriented, subjective) view are weaker than they are in relation to indexing and knowledge organization in general. Apart from level of granularity, the evaluation of a ToC is difficult to separate from the evaluation of the structuring and naming of the elements of the structure of the document it represents.
    Date
    18.11.2023 13:47:22
    Type
    a
  8. Hjoerland, B.; Scerri, E.; Dupré, J.: Forum: The Philosophy of Classification : The Periodic Table and the Philosophy of Classification - What is the Nature of the Periodic Table as a Classification System? - A Note on the Debate Between Hjørland and Scerri on the Significance of the Periodic Table (2011) 0.01
    0.009757059 = product of:
      0.019514117 = sum of:
        0.019514117 = product of:
          0.029271174 = sum of:
            0.02316926 = weight(_text_:j in 4294) [ClassicSimilarity], result of:
              0.02316926 = score(doc=4294,freq=2.0), product of:
                0.109994456 = queryWeight, product of:
                  3.1774964 = idf(docFreq=5010, maxDocs=44218)
                  0.034616705 = queryNorm
                0.21064025 = fieldWeight in 4294, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1774964 = idf(docFreq=5010, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4294)
            0.006101913 = weight(_text_:a in 4294) [ClassicSimilarity], result of:
              0.006101913 = score(doc=4294,freq=8.0), product of:
                0.039914686 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.034616705 = queryNorm
                0.15287387 = fieldWeight in 4294, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4294)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Thanks to Professor Eric Scerri for engaging in debate in this journal (Scerri 2011) by replying to my review (Hjørland 2008a) of his book (Scerri 2007). One of my points has been that we in our community (Knowledge Organization, KO / Library and Information Science, LIS) have been too isolated from broader academic fields related to classification and the organization of knowledge. The present debate is a step towards reversing this situation. Bezug zu: Scerri, E.R.: The periodic table: its story and its significance. Oxford: Oxford University Press 2007. xxii, 346 S. und die Rezension dazu in: KO 35(2008) no.4, S.251-254 (B. Hjoerland).
    Type
    a
  9. Schöpfel, J.; Farace, D.; Prost, H.; Zane, A.; Hjoerland, B.: Data documents (2021) 0.01
    0.009757059 = product of:
      0.019514117 = sum of:
        0.019514117 = product of:
          0.029271174 = sum of:
            0.02316926 = weight(_text_:j in 586) [ClassicSimilarity], result of:
              0.02316926 = score(doc=586,freq=2.0), product of:
                0.109994456 = queryWeight, product of:
                  3.1774964 = idf(docFreq=5010, maxDocs=44218)
                  0.034616705 = queryNorm
                0.21064025 = fieldWeight in 586, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1774964 = idf(docFreq=5010, maxDocs=44218)
                  0.046875 = fieldNorm(doc=586)
            0.006101913 = weight(_text_:a in 586) [ClassicSimilarity], result of:
              0.006101913 = score(doc=586,freq=8.0), product of:
                0.039914686 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.034616705 = queryNorm
                0.15287387 = fieldWeight in 586, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=586)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    This article presents and discusses different kinds of data documents, including data sets, data studies, data papers and data journals. It provides descriptive and bibliometric data on different kinds of data documents and discusses the theoretical and philosophical problems by classifying documents according to the DIKW model (data documents, information documents, knowl­edge documents and wisdom documents). Data documents are, on the one hand, an established category today, even with its own data citation index (DCI). On the other hand, data documents have blurred boundaries in relation to other kinds of documents and seem sometimes to be understood from the problematic philosophical assumption that a datum can be understood as "a single, fixed truth, valid for everyone, everywhere, at all times".
    Type
    a
  10. Hjoerland, B.: Classical databases and knowledge organisation : a case for Boolean retrieval and human decision-making during search (2014) 0.01
    0.009511786 = product of:
      0.019023571 = sum of:
        0.019023571 = product of:
          0.028535355 = sum of:
            0.0050849267 = weight(_text_:a in 1398) [ClassicSimilarity], result of:
              0.0050849267 = score(doc=1398,freq=8.0), product of:
                0.039914686 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.034616705 = queryNorm
                0.12739488 = fieldWeight in 1398, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1398)
            0.023450429 = weight(_text_:22 in 1398) [ClassicSimilarity], result of:
              0.023450429 = score(doc=1398,freq=2.0), product of:
                0.1212218 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.034616705 = queryNorm
                0.19345059 = fieldWeight in 1398, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1398)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    This paper considers classical bibliographic databases based on the Boolean retrieval model (for example MEDLINE and PsycInfo). This model is challenged by modern search engines and information retrieval (IR) researchers, who often consider Boolean retrieval as a less efficient approach. This speech examines this claim and argues for the continued value of Boolean systems, which implies two further issues: (1) the important role of human expertise in searching (expert searchers and "information literacy") and (2) the role of knowledge organization (KO) in the design and use of classical databases, including controlled vocabularies and human indexing. An underlying issue is the kind of retrieval system for which one should aim. It is suggested that Julian Warner's (2010) differentiation between the computer science traditions, aiming at automatically transforming queries into (ranked) sets of relevant documents, and an older library-orientated tradition aiming at increasing the "selection power" of users seems important. The Boolean retrieval model is important in order to provide users with the power to make informed searches and have full control over what is found and what is not found. These issues may also have important implications for the maintenance of information science and KO as research fields as well as for the information profession as a profession in its own right.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
    Type
    a
  11. Hjoerland, B.: User-based and cognitive approaches to knowledge organization : a theoretical analysis of the research literature (2013) 0.01
    0.009284702 = product of:
      0.018569404 = sum of:
        0.018569404 = product of:
          0.027854105 = sum of:
            0.0044036764 = weight(_text_:a in 629) [ClassicSimilarity], result of:
              0.0044036764 = score(doc=629,freq=6.0), product of:
                0.039914686 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.034616705 = queryNorm
                0.11032722 = fieldWeight in 629, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=629)
            0.023450429 = weight(_text_:22 in 629) [ClassicSimilarity], result of:
              0.023450429 = score(doc=629,freq=2.0), product of:
                0.1212218 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.034616705 = queryNorm
                0.19345059 = fieldWeight in 629, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=629)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    In the 1970s and 1980s, forms of user-based and cognitive approaches to knowledge organization came to the forefront as part of the overall development in library and information science and in the broader society. The specific nature of user-based approaches is their basis in the empirical studies of users or the principle that users need to be involved in the construction of knowledge organization systems. It might seem obvious that user-friendly systems should be designed on user studies or user involvement, but extremely successful systems such as Apple's iPhone, Dialog's search system and Google's PageRank are not based on the empirical studies of users. In knowledge organization, the Book House System is one example of a system based on user studies. In cognitive science the important WordNet database is claimed to be based on psychological research. This article considers such examples. The role of the user is often confused with the role of subjectivity. Knowledge organization systems cannot be objective and must therefore, by implication, be based on some kind of subjectivity. This subjectivity should, however, be derived from collective views in discourse communities rather than be derived from studies of individuals or from the study ofabstract minds.
    Date
    22. 2.2013 11:49:13
    Type
    a
  12. Nicolaisen, J.; Hjoerland, B.: Practical potentials of Bradford's law : a critical examination of the received view (2007) 0.01
    0.009161321 = product of:
      0.018322643 = sum of:
        0.018322643 = product of:
          0.027483964 = sum of:
            0.02316926 = weight(_text_:j in 830) [ClassicSimilarity], result of:
              0.02316926 = score(doc=830,freq=2.0), product of:
                0.109994456 = queryWeight, product of:
                  3.1774964 = idf(docFreq=5010, maxDocs=44218)
                  0.034616705 = queryNorm
                0.21064025 = fieldWeight in 830, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1774964 = idf(docFreq=5010, maxDocs=44218)
                  0.046875 = fieldNorm(doc=830)
            0.004314704 = weight(_text_:a in 830) [ClassicSimilarity], result of:
              0.004314704 = score(doc=830,freq=4.0), product of:
                0.039914686 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.034616705 = queryNorm
                0.10809815 = fieldWeight in 830, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=830)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Type
    a
  13. Søndergaard, T.F.; Andersen, J.; Hjoerland, B.: Documents and the communication of scientific and scholarly information : revising and updating the UNISIST model (2003) 0.01
    0.008832963 = product of:
      0.017665926 = sum of:
        0.017665926 = product of:
          0.02649889 = sum of:
            0.019307716 = weight(_text_:j in 4452) [ClassicSimilarity], result of:
              0.019307716 = score(doc=4452,freq=2.0), product of:
                0.109994456 = queryWeight, product of:
                  3.1774964 = idf(docFreq=5010, maxDocs=44218)
                  0.034616705 = queryNorm
                0.17553353 = fieldWeight in 4452, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1774964 = idf(docFreq=5010, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4452)
            0.0071911733 = weight(_text_:a in 4452) [ClassicSimilarity], result of:
              0.0071911733 = score(doc=4452,freq=16.0), product of:
                0.039914686 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.034616705 = queryNorm
                0.18016359 = fieldWeight in 4452, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4452)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    In 1971 UNISIST proposed a model for scientific and technical communication. This model has been widely cited and additional models have been added to the literature. There is a need to bring this model to the focus of information science (IS) research as well as to update and revise it. There are both empirical and theoretical reasons for this need. On the empirical side much has happened in the developments of electronic communication that needs to be considered. From a theoretical point of view the domain-analytic view has proposed that differences between different disciplines and domains should be emphasised. The original model only considered scientific and technical communication as a whole. There is a need both to compare with the humanities and social sciences and to regard internal differences in the sciences. There are also other reasons to reconsider and modify this model today. Offers not only a descriptive model, but also a theoretical perspective from which information systems may be understood and evaluated. In addition to this provides empirical exemplification and proposals for research initiatives.
    Type
    a
  14. Hjoerland, B.; Nicolaisen, J.: Bradford's law of scattering : ambiguities in the concept of "subject" (2005) 0.01
    0.008511819 = product of:
      0.017023638 = sum of:
        0.017023638 = product of:
          0.025535455 = sum of:
            0.019307716 = weight(_text_:j in 157) [ClassicSimilarity], result of:
              0.019307716 = score(doc=157,freq=2.0), product of:
                0.109994456 = queryWeight, product of:
                  3.1774964 = idf(docFreq=5010, maxDocs=44218)
                  0.034616705 = queryNorm
                0.17553353 = fieldWeight in 157, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1774964 = idf(docFreq=5010, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=157)
            0.0062277387 = weight(_text_:a in 157) [ClassicSimilarity], result of:
              0.0062277387 = score(doc=157,freq=12.0), product of:
                0.039914686 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.034616705 = queryNorm
                0.15602624 = fieldWeight in 157, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=157)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Bradfordrsquos law of scattering is said to be about subject scattering in information sources. However, in spite of a corpus of writings about the meaning of the word ldquosubjectrdquo and equivalent terms such as ldquoaboutnessrdquo or ldquotopicalityrdquo, the meaning of ldquosubjectrdquo has never been explicitly addressed in relation to Bradfordrsquos law. This paper introduces a distinction between Lexical scattering, Semantic scattering, and Subject scattering. Neither Bradford himself nor any follower has explicitly considered the differences between these three and the implications for the practical applications of Bradfordrsquos law. Traditionally, Bradfordrsquos law has been seen as a neutral and objective tool for the selection of the most central information sources in a field. However, it is hard to find actual reports that describe how Bradfordrsquos law has been applied in practical library and information services. Theoretical as well as historical evidence suggest that the selection of journals based on Bradford-distributions tend to favorite dominant theories and views while suppressing views other than the mainstream at a given time.
    Type
    a
  15. Hjoerland, B.; Nicolaisen, J.: Scientific and scholarly classifications are not "naïve" : a comment to Begthol (2003) (2004) 0.01
    0.008330947 = product of:
      0.016661894 = sum of:
        0.016661894 = product of:
          0.024992839 = sum of:
            0.019307716 = weight(_text_:j in 3023) [ClassicSimilarity], result of:
              0.019307716 = score(doc=3023,freq=2.0), product of:
                0.109994456 = queryWeight, product of:
                  3.1774964 = idf(docFreq=5010, maxDocs=44218)
                  0.034616705 = queryNorm
                0.17553353 = fieldWeight in 3023, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1774964 = idf(docFreq=5010, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3023)
            0.0056851218 = weight(_text_:a in 3023) [ClassicSimilarity], result of:
              0.0056851218 = score(doc=3023,freq=10.0), product of:
                0.039914686 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.034616705 = queryNorm
                0.14243183 = fieldWeight in 3023, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3023)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Relationships between Knowledge Organization in LIS and Scientific & Scholarly Classifications In her paper "Classification for Information Retrieval and Classification for Knowledge Discovery: Relationships between 'Professional' and 'Naive' Classifications" (KO v30, no.2, 2003), Beghtol outlines how Scholarly activities and research lead to classification systems which subsequently are disseminated in publications which are classified in information retrieval systems, retrieved by the users and again used in Scholarly activities and so on. We think this model is correct and that its point is important. What we are reacting to is the fact that Beghtol describes the Classifications developed by scholars as "naive" while she describes the Classifications developed by librarians and information scientists as "professional." We fear that this unfortunate terminology is rooted in deeply ar chored misjudgments about the relationships between scientific and Scholarly classification an the one side and LIS Classifications an the other. Only a correction of this misjudgment may give us in the field of knowledge organization a Chance to do a job that is not totally disrespected and disregarded by the rest of the intellectual world.
    Type
    a
  16. Hjoerland, B.: ¬The controversy over the concept of information : a rejoinder to Professor Bates (2009) 0.01
    0.0060690837 = product of:
      0.012138167 = sum of:
        0.012138167 = product of:
          0.01820725 = sum of:
            0.006482036 = weight(_text_:a in 2748) [ClassicSimilarity], result of:
              0.006482036 = score(doc=2748,freq=52.0), product of:
                0.039914686 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.034616705 = queryNorm
                0.16239727 = fieldWeight in 2748, product of:
                  7.2111025 = tf(freq=52.0), with freq of:
                    52.0 = termFreq=52.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=2748)
            0.011725214 = weight(_text_:22 in 2748) [ClassicSimilarity], result of:
              0.011725214 = score(doc=2748,freq=2.0), product of:
                0.1212218 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.034616705 = queryNorm
                0.09672529 = fieldWeight in 2748, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=2748)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Content
    "This letter considers some main arguments in Professor Bates' article (2008), which is part of our former debate (Bates, 2005,2006; Hjoerland, 2007). Bates (2008) does not write much to restate or enlarge on her theoretical position but is mostly arguing about what she claims Hjorland (2007) ignored or misinterpreted in her two articles. Bates (2008, p. 842) wrote that my arguments did not reflect "a standard of coherence, consistency, and logic that is expected of an argument presented in a scientific journal." My argumentation below will refute this statement. This controversy is whether information should be understood as a subjective phenomenon (alone), as an objective phenomenon (alone), or as a combined objective and a subjective phenomenon ("having it both ways"). Bates (2006) defined "information" (sometimes, e.g., termed "information 1," p. 1042) as an objective phenomenon and "information 2" as a subjective phenomenon. However, sometimes the term "information" is also used as a synonym for "information 2," e.g., "the term information is understood to refer to one or both senses" (p. 1042). Thus, Professor Bates is not consistent in using the terminology that she herself introduces, and confusion in this controversy may be caused by Professor Bates' ambiguity in her use of the term "information." Bates (2006, p. 1033) defined information as an objective phenomenon by joining a definition by Edwin Parker: "Information is the pattern of organization of matter and energy." The argument in Hjoerland (2007) is, by contrast, that information should be understood as a subjective phenomenon all the way down: That neither the objective definition of information nor "having it both ways" is fruitful. This is expressed, for example, by joining Karpatschof's (2000) definition of information as a physical signal relative to a certain release mechanism, which implies that information is not something objective that can be understood independently of an observer or independently of other kinds of mechanism that are programmed to be sensitive to specific attributes of a signal: There are many differences in the world, and each of them is potentially informative in given situations. Regarding Parker's definition, "patterns of organization of matter and energy" are no more than that until they inform somebody about something. When they inform somebody about something, they may be considered information. The following quote is part of the argumentation in Bates (2008): "He contrasts my definition of information as 'observer-independent' with his position that information is 'situational' and adds a list of respected names on the situational side (Hjoerland, 2007, p. 1448). What this sentence, and much of the remainder of his argument, ignores is the fact that my approach accounts for both an observer-independent and a contextual, situational sense of information." Yes, it is correct that I mostly concentrated on refuting Bates' objective definition of information. It is as if Bates expects an overall appraisal of her work rather than providing a specific analysis of the points on which there are disagreements. I see Bates' "having it both ways": a symptom of inconsistence in argumentation.
    Bates (2008, p. 843) further writes about her definition of information: "This is the objectivist foundation, the rock bottom minimum of the meaning of information; it informs both articles throughout." This is exactly the focus of my disagreement. If we take a word in a language, it is understood as both being a "pattern of organization of matter and energy" (e.g., a sound) and carrying meaning. But the relation between the physical sign and its meaning is considered an arbitrary relation in linguistics. Any physical material has the potential of carrying any meaning and to inform somebody. The physical stuff in itself is not information until it is used as a sign. An important issue in this debate is whether Bates' examples demonstrate the usefulness of her own position as opposed to mine. Her example about information seeking concerning navigation and how "the very layout of the ship and the design of the bridge promoted the smooth flow of information from the exterior of the ship to the crew and among the crewmembers" (Bates, 2006, pp. 1042-1043) does not justify Bates' definition of information as an objective phenomenon. The design is made for a purpose, and this purpose determines how information should be defined in this context. Bates' view on "curatorial sciences" (2006, p. 1043) is close to Hjorland's suggestions (2000) about "memory institutions," which is based on the subjective understanding of information. However, she does not relate to this proposal, and she does not argue how the objective understanding of information is related to this example. I therefore conclude that Bates' practical examples do not support her objective definition of information, nor do they support her "having it both ways." Finally, I exemplify the consequences of my understanding of information by showing how an archaeologist and a geologist might represent the same stone differently in information systems. Bates (2008, p. 843) writes about this example: "This position is completely consistent with mine." However, this "consistency" was not recognized by Bates until I published my objections and, therefore, this is an indication that my criticism was needed. I certainly share Professor Bates (2008) advice to read her original articles: They contain much important stuff. I just recommend that the reader ignore the parts that argue about information being an objective phenomenon."
    References Bates, M.J. (2005). Information and knowledge: An evolutionary framework for information science. Information Research, 10(4), paper 239. Available at http://InformationR.net/ir/10-4/paper239.html. Bates, M.J. (2006). Fundamental forms of information. Journal of the American Society for Information Science and Technology, 57(8), 1033-1045. Bates, M.J. (2008). Hjorland's critique of Bates' work on defining information. Journal of the American Society for Information Science and Technology, 59(5), 842-844. Hjoerland, B. (2000). Documents, memory institutions, and information science. Journal of Documentation, 56, 27-41. Hjoerland, B. (2007). Information: Objective or subjective-situational? Journal of the American Society for Information Science and Technology, 58(10), 1448-1456. Karpatschof, B. (2000). Human activity. Contributions to the anthropological sciences from a perspective of activity theory. Copenhagen: Dansk Psykologisk Forlag. Retrieved May 14, 2007, from http://informationr.net/ir/ 12-3/Karpatschof/Karp00.html.
    Date
    22. 3.2009 18:13:27
    Type
    a
  17. Hjoerland, B.; Hartel, J.: Introduction to a Special Issue of Knowledge Organization (2003) 0.01
    0.0054197907 = product of:
      0.0108395815 = sum of:
        0.0108395815 = product of:
          0.016259372 = sum of:
            0.009653858 = weight(_text_:j in 3013) [ClassicSimilarity], result of:
              0.009653858 = score(doc=3013,freq=2.0), product of:
                0.109994456 = queryWeight, product of:
                  3.1774964 = idf(docFreq=5010, maxDocs=44218)
                  0.034616705 = queryNorm
                0.08776677 = fieldWeight in 3013, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1774964 = idf(docFreq=5010, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=3013)
            0.0066055143 = weight(_text_:a in 3013) [ClassicSimilarity], result of:
              0.0066055143 = score(doc=3013,freq=54.0), product of:
                0.039914686 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.034616705 = queryNorm
                0.16549082 = fieldWeight in 3013, product of:
                  7.3484693 = tf(freq=54.0), with freq of:
                    54.0 = termFreq=54.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=3013)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    It is with very great pleasure that we introduce this special issue of Knowledge Organization on Domain Analysis (DA). Domain analysis is an approach to information science (IS) that emphasizes the social, historical, and cultural dimensions of information. It asserts that collective fields of knowledge, or "domains," form the unit of analysis of information science (IS). DA, elsewhere referred to as a sociocognitive (Hjoerland, 2002b; Jacob & Shaw, 1998) or collectivist (Talja et al, 2004) approach, is one of the major metatheoretical perspectives available to IS scholars to orient their thinking and research. DA's focus an domains stands in contrast to the alternative metatheories of cognitivism and information systems, which direct attention to psychological processes and technological processes, respectively. The first comprehensive international formulation of DA as an explicit point of view was Hjoerland and Albrechtsen (1995). However, a concern for information in the context of a community can be traced back to American library historian and visionary Jesse Shera, and is visible a century ago in the earliest practices of special librarians and European documentalists. More recently, Hjoerland (1998) produced a domain analytic study of the field of psychology; Jacob and Shaw (1998) made an important interpretation and historical review of DA; while Hjoerland (2002a) offered a seminal formulation of eleven approaches to the study of domains, receiving the ASLIB 2003 Award. Fjordback Soendergaard; Andersen and Hjoerland (2003) suggested an approach based an an updated version of the UNISIST-model of scientific communication. In fall 2003, under the conference theme of "Humanizing Information Technology" DA was featured in a keynote address at the annual meeting of the American Society for Information Science and Technology (Hjorland, 2004). These publications and events are evidence of growth in representation of the DA view. To date, informal criticism of domain analysis has followed two tracks. Firstly, that DA assumes its communities to be academic in nature, leaving much of human experience unexplored. Secondly, that there is a lack of case studies illustrating the methods of domain analytic empirical research. Importantly, this special collection marks progress by addressing both issues. In the articles that follow, domains are perceived to be hobbies, professions, and realms of popular culture. Further, other papers serve as models of different ways to execute domain analytic scholarship, whether through traditional empirical methods, or historical and philosophical techniques. Eleven authors have contributed to this special issue, and their backgrounds reflect the diversity of interest in DA. Contributors come from North America, Europe, and the Middle East. Academics from leading research universities are represented. One writer is newly retired, several are in their heyday as scholars, and some are doctoral students just entering this field. This range of perspectives enriches the collection. The first two papers in this issue are invited papers and are, in our opinion, very important. Anders Oerom was a senior lecturer at the Royal Scbool of 'Library and Information Science in Denmark, Aalborg Branch. He retired from this position an March 1, 2004, and this paper is his last contribution in this position. We are grateful that he took the time to complete "Knowledge Organization in the Domain of Art Studies - History, Transition and Conceptual Changes" in spite of many other duties. Versions of the paper have previously been presented at a Ph.D-course in knowledge organization and related versions have been published in Danish and Spanish. In many respects, it represents a model of how a domain could, or should, be investigated from the DA point of view.
    It uncovers the main theoretical influences that have affected the representation of art in systems of knowledge organization such as LCC, DDC, UDC and the Art & Architecture Thesaurus, and it provides a deep basis for evaluating such systems. Knut Tore Abrahamsen's "Indexing of Musical Genres. An Epistemological Perspective" is a modified version of a thesis written at the Royal School of Library and Information Science in Copenhagen. As a thesis it is a major achievement which successfully combines knowledge of music, epistemology, and knowledge organization. This paper may also be seen as an example of how domains can be analyzed and how knowledge organization may be improved in practice. We would like to thank Sanna Talja of the University of Tampere, among other people, for Input an this piece. And now to the rest of the issue: Olof Sundin's "Towards an Understanding of Symbolic Aspects of Professional Information: an Analysis of the Nursing Knowledge Domain" contributes to DA by introducing a deeper understanding of the notion of professions and by uncovering how in some domains, "symbolic" functions of information may be more important than instrumental functions. Rich Gazan's: "Metadata as a Realm of Translation: Merging Knowledge Domains in the Design of an Environmental Information System" demonstrates the problems of merging data collections in interdisciplinary fields, rohen the perceived informational value of different access points varies with disciplinary membership. This is important for the design of systems of metadata. Joe Tennis': "Two Axes of Domains for Domain Analysis" suggests that the notion of domain is underdeveloped in DA. Tennis states, "Hjoerland has provided a hammer, but rohere are the nails?" In addition he raises a question concerning the degree of specialization within a domain. He resolves these issues by proposing two new "axes" to DA. Chaim Zins & David Guttmann's: "Domain Analysis of Social Work: An Example of an Integrated Methodological Approach" represents an empirical approach to the construction of knowledge maps based an representative samples of the literature an social work. In a way, this paper is the most traditional or straightforward approach to knowledge organization in the issue: It suggests a concrete classification based an scientific norms of representation and objectivity.
    Hanne Albrechtsen & Annelise Mark Pejtersen's: "Cognitive Work Analysis and Work Centered Design of Classification Schemes" is also based an empirical studies, but focuses an work groups rather than literatures. It claims that deep semantic structures relevant to classification evolve dynamically in work groups. Its empirical method is different from Zins & Guttmann's. Future research must further uncover the relative strengths and weaknesses of literatures versus people in the construction of knowledge organizing systems. Jenna Hartel's: "The Serious Leisure Frontier in Library and Information Science: Hobby Domains" expands DA to the field of "everyday information use" and demonstrates that most of the approaches suggested by Hjoerland (2002a) may also be relevant to this field. Finally, Birger Hjoerland & Jenna Hartel's After-word: Some Basic Issues Related to the Notion of a Domain" suggests that the notions of ontology, epistemology, and sociology may be three fundamental dimensions of domains and that these perspectives may clarify what domains are and the dynamics of their development. While this special issue marks great progress, and the zenith of DA to date, the approach remains emergent and there is still much work to be done. We see the need for ongoing domain analytic research along two paths. Remarkably, to our knowledge no domain has been thoroughly studied in the domain analytic view. The first order, then, is rigorous application of DA to multiple domains. Second, theoretical and methodological gaps presently exist; these are opportunities for creative inventors to contribute original extensions to the approach. We warmly invite all readers to seriously engage with these articles, whether as critics, spectators, or participants in the domain analytic project.
    Type
    a
  18. Hjoerland, B.: Does informetrics need a theory? : a rejoinder to professor anthony van raan (2017) 0.00
    0.0017614705 = product of:
      0.003522941 = sum of:
        0.003522941 = product of:
          0.010568823 = sum of:
            0.010568823 = weight(_text_:a in 3967) [ClassicSimilarity], result of:
              0.010568823 = score(doc=3967,freq=6.0), product of:
                0.039914686 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.034616705 = queryNorm
                0.26478532 = fieldWeight in 3967, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3967)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Type
    a
  19. Hjoerland, B.: Does the traditional thesaurus have a place in modern information retrieval? (2016) 0.00
    0.0015278305 = product of:
      0.003055661 = sum of:
        0.003055661 = product of:
          0.009166983 = sum of:
            0.009166983 = weight(_text_:a in 2915) [ClassicSimilarity], result of:
              0.009166983 = score(doc=2915,freq=26.0), product of:
                0.039914686 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.034616705 = queryNorm
                0.22966442 = fieldWeight in 2915, product of:
                  5.0990195 = tf(freq=26.0), with freq of:
                    26.0 = termFreq=26.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2915)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Abstract
    The introduction (1.0) of this article considers the status of the thesaurus within LIS and asks about the future prospect for thesauri. The main following points are: (2.0) Any knowledge organization system (KOS) is today threatened by Google-like systems, and it is therefore important to consider if there still is a need for knowledge organization (KO) in the traditional sense. (3.0) A thesaurus is a somewhat reduced form of KOS compared to, for example, an ontology, and its "bundling" and restricted number of semantic relations has never been justified theoretically or empirically. Which semantic relations are most fruitful for a given task is thus an open question, and different domains may need different kinds of KOS including different sets of relations between terms. (4.0) A KOS is a controlled vocabulary (CV) and should not be considered a "perfect language" (Eco 1995) that is simply able to remove the ambiguity of natural language; rather much ambiguity in language represents a battle between many "voices" (Bakhtin 1981) or "paradigms" (Kuhn 1962). In this perspective, a specific KOS, e.g. a specific thesaurus, is just one "voice" among many voices, and that voice has to demonstrate its authority and utility. It is concluded (5.0) that the traditional thesaurus does not have a place in modern information retrieval, but that more flexible semantic tools based on proper studies of domains will always be important.
    Type
    a
  20. Hjoerland, B.; Pedersen, K.N.: ¬A substantive theory of classification for information retrieval (2005) 0.00
    0.0014678922 = product of:
      0.0029357844 = sum of:
        0.0029357844 = product of:
          0.008807353 = sum of:
            0.008807353 = weight(_text_:a in 1892) [ClassicSimilarity], result of:
              0.008807353 = score(doc=1892,freq=24.0), product of:
                0.039914686 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.034616705 = queryNorm
                0.22065444 = fieldWeight in 1892, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1892)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - To suggest that a theory of classification for information retrieval (IR), asked for by Spärck Jones in a 1970 paper, presupposes a full implementation of a pragmatic understanding. Part of the Journal of Documentation celebration, "60 years of the best in information research". Design/methodology/approach - Literature-based conceptual analysis, taking Sparck Jones as its starting-point. Analysis involves distinctions between "positivism" and "pragmatism" and "classical" versus Kuhnian understandings of concepts. Findings - Classification, both manual and automatic, for retrieval benefits from drawing upon a combination of qualitative and quantitative techniques, a consideration of theories of meaning, and the adding of top-down approaches to IR in which divisions of labour, domains, traditions, genres, document architectures etc. are included as analytical elements and in which specific IR algorithms are based on the examination of specific literatures. Introduces an example illustrating the consequences of a full implementation of a pragmatist understanding when handling homonyms. Practical implications - Outlines how to classify from a pragmatic-philosophical point of view. Originality/value - Provides, emphasizing a pragmatic understanding, insights of importance to classification for retrieval, both manual and automatic. - Vgl. auch: Szostak, R.: Classification, interdisciplinarity, and the study of science. In: Journal of documentation. 64(2008) no.3, S.319-332.
    Type
    a