Search (82 results, page 1 of 5)

  • × author_ss:"Hjoerland, B."
  1. Hjoerland, B.: Theories of knowledge organization - theories of knowledge (2017) 0.03
    0.030058773 = product of:
      0.060117546 = sum of:
        0.006246961 = weight(_text_:in in 3494) [ClassicSimilarity], result of:
          0.006246961 = score(doc=3494,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.10520181 = fieldWeight in 3494, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3494)
        0.03316972 = weight(_text_:und in 3494) [ClassicSimilarity], result of:
          0.03316972 = score(doc=3494,freq=8.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.34282678 = fieldWeight in 3494, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3494)
        0.020700864 = product of:
          0.04140173 = sum of:
            0.04140173 = weight(_text_:22 in 3494) [ClassicSimilarity], result of:
              0.04140173 = score(doc=3494,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.2708308 = fieldWeight in 3494, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3494)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Pages
    S.22-36
    Series
    Fortschritte in der Wissensorganisation; Bd.13
    Source
    Theorie, Semantik und Organisation von Wissen: Proceedings der 13. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und dem 13. Internationalen Symposium der Informationswissenschaft der Higher Education Association for Information Science (HI) Potsdam (19.-20.03.2013): 'Theory, Information and Organization of Knowledge' / Proceedings der 14. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und Natural Language & Information Systems (NLDB) Passau (16.06.2015): 'Lexical Resources for Knowledge Organization' / Proceedings des Workshops der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) auf der SEMANTICS Leipzig (1.09.2014): 'Knowledge Organization and Semantic Web' / Proceedings des Workshops der Polnischen und Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) Cottbus (29.-30.09.2011): 'Economics of Knowledge Production and Organization'. Hrsg. von W. Babik, H.P. Ohly u. K. Weber
  2. Hjoerland, B.: Education in knowledge organization (KO) (2023) 0.02
    0.015785076 = product of:
      0.047355227 = sum of:
        0.012620768 = weight(_text_:in in 1124) [ClassicSimilarity], result of:
          0.012620768 = score(doc=1124,freq=16.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.21253976 = fieldWeight in 1124, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1124)
        0.03473446 = product of:
          0.06946892 = sum of:
            0.06946892 = weight(_text_:ausbildung in 1124) [ClassicSimilarity], result of:
              0.06946892 = score(doc=1124,freq=2.0), product of:
                0.23429902 = queryWeight, product of:
                  5.3671665 = idf(docFreq=560, maxDocs=44218)
                  0.043654136 = queryNorm
                0.29649687 = fieldWeight in 1124, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.3671665 = idf(docFreq=560, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1124)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    This article provides analyses, describes dilemmas, and suggests way forwards in the teaching of knowl­edge organization (KO). The general assumption of the article is that theoretical problems in KO must be the point of departure for teaching KO. Section 2 addresses the teaching of practical, applied and professional KO, focusing on learning about specific knowl­edge organization systems (KOS), specific standards, and specific methods for organizing knowl­edge, but provides arguments for not isolating these aspects from theoretical issues. Section 3 is about teaching theoretical and academic KO, in which the focus is on examining the bases on which KOSs and knowl­edge organization processes such as classifying and indexing are founded. This basically concerns concepts and conceptual relations and should not be based on prejudices about the superiority of either humans or computers for KO. Section 4 is about the study of education in KO, which is considered important because it is about how the field is monitoring itself and about how it should be shaping its own future. Section 5 is about the role of the ISKO Encyclopedia of Knowl­edge Organization in education of KO, emphasizing the need for an interdisciplinary source that may help improve the conceptual clarity in the field. The conclusion suggests some specific recommendations for curricula in KO based on the author's view of KO.
    Theme
    Ausbildung
  3. Hjoerland, B.: Theory of information science : Reply to Professor Gernot Wersig (1998) 0.01
    0.013046755 = product of:
      0.039140265 = sum of:
        0.010709076 = weight(_text_:in in 403) [ClassicSimilarity], result of:
          0.010709076 = score(doc=403,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.18034597 = fieldWeight in 403, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.09375 = fieldNorm(doc=403)
        0.02843119 = weight(_text_:und in 403) [ClassicSimilarity], result of:
          0.02843119 = score(doc=403,freq=2.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.29385152 = fieldWeight in 403, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.09375 = fieldNorm(doc=403)
      0.33333334 = coord(2/6)
    
    Abstract
    Erwiderung auf die Rezension des gleichbetitelten Buches des Autors durch G. Wersig in nfd 49(1998) H.1
    Source
    nfd Information - Wissenschaft und Praxis. 49(1998) H.2, S.122-126
  4. Hjoerland, B.: ¬The special competency of information specialists (2002) 0.01
    0.0119952 = product of:
      0.0359856 = sum of:
        0.015144923 = weight(_text_:in in 1265) [ClassicSimilarity], result of:
          0.015144923 = score(doc=1265,freq=64.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.25504774 = fieldWeight in 1265, product of:
              8.0 = tf(freq=64.0), with freq of:
                64.0 = termFreq=64.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1265)
        0.020840677 = product of:
          0.041681353 = sum of:
            0.041681353 = weight(_text_:ausbildung in 1265) [ClassicSimilarity], result of:
              0.041681353 = score(doc=1265,freq=2.0), product of:
                0.23429902 = queryWeight, product of:
                  5.3671665 = idf(docFreq=560, maxDocs=44218)
                  0.043654136 = queryNorm
                0.17789811 = fieldWeight in 1265, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.3671665 = idf(docFreq=560, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1265)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Content
    "In a new article published in Journal of Documentation, 2002, I claim that the special competency of information specialists and information scientists are related to "domain analysis." Information science grew out of special librarianship and documentation (cf. Williams, 1997), and implicit in its tradition has in my opinion been a focus an subject knowledge. Although domain analysis has earlier been introduced in JASIST (Hjoerland & Albrechtsen, 1995), the new article introduces 11 Specific approaches to domain analysis, which I Claim together define the Specific competencies of information specialists. The approaches are (I) Producing and evaluating literature guides and subject gateways, (2) Producing and evaluating special classifications and thesauri, (3) Research an and competencies in indexing and retrieving information specialties, (4) Knowledge about empirical user studies in subject areas, (5) Producing and interpreting bibliometrical studies, (6) Historical studies of information structures and Services in domains, (7) Studies of documents and genres in knowledge domains, (8) Epistemological and critical studies of different paradigms, assumptions, and interests in domains, (9) Knowledge about terminological studies, LSP (Languages for Special Purposes), and discourse analysis in knowledge fields, (10) Knowledge about and studies of structures and institutions in scientific and professional communication in a domain, (11) Knowledge about methods and results from domain analytic studies about professional cognition, knowledge representation in computer science and artificial intelligence. By bringing these approaches together, the paper advocates a view which may have been implicit in previous literature but which has not before been Set out systematically. The approaches presented here are neither exhaustive nor mutually exhaustve, but an attempt is made to present the state of the art. Specific examples and selective reviews of literature are provided, and the strength and drawback of each of these approaches are being discussed. It is my Claim that the information specialist who has worked with these 1 1 approaches in a given domain (e.g., music, sociology, or chemistry) has a special expertise that should not be mixed up with the kind of expertise taught at universities in corresponding subjects. Some of these 11 approaches are today well-known in schools of LIS. Bibliometrics is an example, Other approaches are new and represent a view of what should be introduced in the training of information professionals. First and foremost does the article advocates the view that these 1 1 approaches should be seen as supplementary. That the Professional identity is best maintained if Chose methods are applied to the same examples (same domain). Somebody would perhaps feel that this would make the education of information professionals too narrow. The Counter argument is that you can only understand and use these methods properly in a new domain, if you already have a deep knowledge of the Specific information problems in at least orte domain. It is a dangerous illusion to believe that one becomes more competent to work in any field if orte does not know anything about any domain. The special challenge in our science is to provide general background for use in Specific fields. This is what domain analysis is developed for. Study programs that allow the students to specialize and to work independent in the selected field (such as, for example, the Curriculum at the Royal School of LIS in Denmark) should fit well with the intentions in domain analysis. In this connection it should be emphasized that the 11 approaches are presented as general approaches that may be used in about any domain whatsoever. They should, however, be seen in connection. If this is not the case, then their relative strengths and weaknesses cannot be evaluated. The approaches do not have the same status. Some (e.g., empirical user studies) are dependent an others (e.g., epistemological studies).
    It is my hope that domain analysis may contribute to the strengthening of the professional and scientific identity of our discipline and provide more coherence and depth in information studies. The paper is an argument about what should be core teachings in our field, It should be both broad enough to cover the important parts of IS and Specific enough to maintain a special focus and identity compared to, for example, computer science and the cognitive sciences. It is not a narrow view of information science and an the other hand it does not Set forth an unrealistic utopia."
    Theme
    Ausbildung
  5. Hjoerland, B.: ¬The importance of theories of knowledge : indexing and information retrieval as an example (2011) 0.01
    0.01096284 = product of:
      0.03288852 = sum of:
        0.015144923 = weight(_text_:in in 4359) [ClassicSimilarity], result of:
          0.015144923 = score(doc=4359,freq=16.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.25504774 = fieldWeight in 4359, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=4359)
        0.017743597 = product of:
          0.035487194 = sum of:
            0.035487194 = weight(_text_:22 in 4359) [ClassicSimilarity], result of:
              0.035487194 = score(doc=4359,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.23214069 = fieldWeight in 4359, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4359)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    A recent study in information science (IS), raises important issues concerning the value of human indexing and basic theories of indexing and information retrieval, as well as the use of quantitative and qualitative approaches in IS and the underlying theories of knowledge informing the field. The present article uses L&E as the point of departure for demonstrating in what way more social and interpretative understandings may provide fruitful improvements for research in indexing, knowledge organization, and information retrieval. The artcle is motivated by the observation that philosophical contributions tend to be ignored in IS if they are not directly formed as criticisms or invitations to dialogs. It is part of the author's ongoing publication of articles about philosophical issues in IS and it is intended to be followed by analyzes of other examples of contributions to core issues in IS. Although it is formulated as a criticism of a specific paper, it should be seen as part of a general discussion of the philosophical foundation of IS and as a support to the emerging social paradigm in this field.
    Date
    17. 3.2011 19:22:55
  6. Hjoerland, B.; Christensen, F.S.: Work tasks and socio-cognitive relevance : a specific example (2002) 0.01
    0.010506973 = product of:
      0.031520918 = sum of:
        0.010820055 = weight(_text_:in in 5237) [ClassicSimilarity], result of:
          0.010820055 = score(doc=5237,freq=6.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.1822149 = fieldWeight in 5237, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5237)
        0.020700864 = product of:
          0.04140173 = sum of:
            0.04140173 = weight(_text_:22 in 5237) [ClassicSimilarity], result of:
              0.04140173 = score(doc=5237,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.2708308 = fieldWeight in 5237, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5237)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Hjorland and Christensen provide an analyzed example in order to clarify their views on relevance. A physician's information seeking focus in dealing with mental illness is seen as largely determined by his social cognitive state, with complexity increasing as the individual's understanding of the topic deviates from mainstream thinking. The physician's viewpoint on the disease will influence terminology utilized, and an eclectic attitude toward the disease will result in more broad criteria of relevance. Relevance is seen as a tool toward meeting an individual goal.
    Date
    21. 7.2006 14:11:22
  7. Hjoerland, B.: User-based and cognitive approaches to knowledge organization : a theoretical analysis of the research literature (2013) 0.01
    0.0091357 = product of:
      0.027407099 = sum of:
        0.012620768 = weight(_text_:in in 629) [ClassicSimilarity], result of:
          0.012620768 = score(doc=629,freq=16.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.21253976 = fieldWeight in 629, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=629)
        0.014786332 = product of:
          0.029572664 = sum of:
            0.029572664 = weight(_text_:22 in 629) [ClassicSimilarity], result of:
              0.029572664 = score(doc=629,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.19345059 = fieldWeight in 629, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=629)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    In the 1970s and 1980s, forms of user-based and cognitive approaches to knowledge organization came to the forefront as part of the overall development in library and information science and in the broader society. The specific nature of user-based approaches is their basis in the empirical studies of users or the principle that users need to be involved in the construction of knowledge organization systems. It might seem obvious that user-friendly systems should be designed on user studies or user involvement, but extremely successful systems such as Apple's iPhone, Dialog's search system and Google's PageRank are not based on the empirical studies of users. In knowledge organization, the Book House System is one example of a system based on user studies. In cognitive science the important WordNet database is claimed to be based on psychological research. This article considers such examples. The role of the user is often confused with the role of subjectivity. Knowledge organization systems cannot be objective and must therefore, by implication, be based on some kind of subjectivity. This subjectivity should, however, be derived from collective views in discourse communities rather than be derived from studies of individuals or from the study ofabstract minds.
    Date
    22. 2.2013 11:49:13
  8. Hjoerland, B.: Table of contents (ToC) (2022) 0.01
    0.0091357 = product of:
      0.027407099 = sum of:
        0.012620768 = weight(_text_:in in 1096) [ClassicSimilarity], result of:
          0.012620768 = score(doc=1096,freq=16.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.21253976 = fieldWeight in 1096, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1096)
        0.014786332 = product of:
          0.029572664 = sum of:
            0.029572664 = weight(_text_:22 in 1096) [ClassicSimilarity], result of:
              0.029572664 = score(doc=1096,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.19345059 = fieldWeight in 1096, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1096)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    A table of contents (ToC) is a kind of document representation as well as a paratext and a kind of finding device to the document it represents. TOCs are very common in books and some other kinds of documents, but not in all kinds. This article discusses the definition and functions of ToC, normative guidelines for their design, and the history and forms of ToC in different kinds of documents and media. A main part of the article is about the role of ToC in information searching, in current awareness services and as items added to bibliographical records. The introduction and the conclusion focus on the core theoretical issues concerning ToCs. Should they be document-oriented or request-oriented, neutral, or policy-oriented, objective, or subjective? It is concluded that because of the special functions of ToCs, the arguments for the request-oriented (policy-oriented, subjective) view are weaker than they are in relation to indexing and knowledge organization in general. Apart from level of granularity, the evaluation of a ToC is difficult to separate from the evaluation of the structuring and naming of the elements of the structure of the document it represents.
    Date
    18.11.2023 13:47:22
    Series
    Reviews of concepts in knowledge organization
  9. Hjoerland, B.: Classical databases and knowledge organisation : a case for Boolean retrieval and human decision-making during search (2014) 0.01
    0.008863994 = product of:
      0.02659198 = sum of:
        0.011805649 = weight(_text_:in in 1398) [ClassicSimilarity], result of:
          0.011805649 = score(doc=1398,freq=14.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.19881277 = fieldWeight in 1398, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1398)
        0.014786332 = product of:
          0.029572664 = sum of:
            0.029572664 = weight(_text_:22 in 1398) [ClassicSimilarity], result of:
              0.029572664 = score(doc=1398,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.19345059 = fieldWeight in 1398, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1398)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    This paper considers classical bibliographic databases based on the Boolean retrieval model (for example MEDLINE and PsycInfo). This model is challenged by modern search engines and information retrieval (IR) researchers, who often consider Boolean retrieval as a less efficient approach. This speech examines this claim and argues for the continued value of Boolean systems, which implies two further issues: (1) the important role of human expertise in searching (expert searchers and "information literacy") and (2) the role of knowledge organization (KO) in the design and use of classical databases, including controlled vocabularies and human indexing. An underlying issue is the kind of retrieval system for which one should aim. It is suggested that Julian Warner's (2010) differentiation between the computer science traditions, aiming at automatically transforming queries into (ranked) sets of relevant documents, and an older library-orientated tradition aiming at increasing the "selection power" of users seems important. The Boolean retrieval model is important in order to provide users with the power to make informed searches and have full control over what is found and what is not found. These issues may also have important implications for the maintenance of information science and KO as research fields as well as for the information profession as a profession in its own right.
    Footnote
    Abstract only: The paper will be published in JASIST
    Series
    Advances in knowledge organization; vol. 14
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  10. Hjoerland, B.: Information: objective or subjective/situational? (2007) 0.01
    0.008308224 = product of:
      0.024924671 = sum of:
        0.010709076 = weight(_text_:in in 5074) [ClassicSimilarity], result of:
          0.010709076 = score(doc=5074,freq=8.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.18034597 = fieldWeight in 5074, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=5074)
        0.014215595 = weight(_text_:und in 5074) [ClassicSimilarity], result of:
          0.014215595 = score(doc=5074,freq=2.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.14692576 = fieldWeight in 5074, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.046875 = fieldNorm(doc=5074)
      0.33333334 = coord(2/6)
    
    Abstract
    This article contrasts Bates' understanding of information as an observer-independent phenomenon with an understanding of information as situational, put forward by, among others, Bateson, Yovits, Spang-Hanssen, Brier, Buckland, Goguen, and Hjorland. The conflict between objective and subjective ways of understanding information corresponds to the conflict between an understanding of information as a thing or a substance versus an understanding of it as a sign. It is a fundamental distinction that involves a whole theory of knowledge, and it has roots back to different metaphors applied in Shannon's information theory. It is argued that a subject-dependent/ situation specific understanding of information is best suited to fulfill the needs in information science and that it is urgent for us to base Information Science (IS; or Library and Information Science, LIS) on this alternative theoretical frame.
    Content
    Bezugnahme auf: Bates, M.J.: Fundamental forms of information. In: Journal of the American Society for Information Science and Technology, 57(2006), no.8, S.1033-1045 und Bates, M.J.: Information and knowledge: an evolutionary framework for information science. In: Information research, 10(2005) no.4.
  11. Hjoerland, B.; Scerri, E.; Dupré, J.: Forum: The Philosophy of Classification : The Periodic Table and the Philosophy of Classification - What is the Nature of the Periodic Table as a Classification System? - A Note on the Debate Between Hjørland and Scerri on the Significance of the Periodic Table (2011) 0.01
    0.008308224 = product of:
      0.024924671 = sum of:
        0.010709076 = weight(_text_:in in 4294) [ClassicSimilarity], result of:
          0.010709076 = score(doc=4294,freq=8.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.18034597 = fieldWeight in 4294, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=4294)
        0.014215595 = weight(_text_:und in 4294) [ClassicSimilarity], result of:
          0.014215595 = score(doc=4294,freq=2.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.14692576 = fieldWeight in 4294, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.046875 = fieldNorm(doc=4294)
      0.33333334 = coord(2/6)
    
    Abstract
    Thanks to Professor Eric Scerri for engaging in debate in this journal (Scerri 2011) by replying to my review (Hjørland 2008a) of his book (Scerri 2007). One of my points has been that we in our community (Knowledge Organization, KO / Library and Information Science, LIS) have been too isolated from broader academic fields related to classification and the organization of knowledge. The present debate is a step towards reversing this situation. Bezug zu: Scerri, E.R.: The periodic table: its story and its significance. Oxford: Oxford University Press 2007. xxii, 346 S. und die Rezension dazu in: KO 35(2008) no.4, S.251-254 (B. Hjoerland).
  12. Hjoerland, B.: Are relations in thesauri "context-free, definitional, and true in all possible worlds"? (2015) 0.01
    0.0081557 = product of:
      0.024467098 = sum of:
        0.012620768 = weight(_text_:in in 2033) [ClassicSimilarity], result of:
          0.012620768 = score(doc=2033,freq=16.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.21253976 = fieldWeight in 2033, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2033)
        0.01184633 = weight(_text_:und in 2033) [ClassicSimilarity], result of:
          0.01184633 = score(doc=2033,freq=2.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.12243814 = fieldWeight in 2033, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2033)
      0.33333334 = coord(2/6)
    
    Abstract
    Much of the literature of information science and knowledge organization has accepted and built upon Elaine Svenonius's (2004) claim that "paradigmatic relationships are those that are context-free, definitional, and true in all possible worlds" (p. 583). At the same time, the literature demonstrates a common understanding that paradigmatic relations are the kinds of semantic relations used in thesauri and other knowledge organization systems (including equivalence relations, hierarchical relations, and associative relations). This understanding is problematic and harmful because it directs attention away from the empirical and contextual basis for knowledge-organizing systems. Whether A is a kind of X is certainly not context-free and definitional in empirical sciences or in much everyday information. Semantic relations are theory-dependent and, in biology, for example, a scientific revolution has taken place in which many relations have changed following the new taxonomic paradigm named "cladism." This biological example is not an exception, but the norm. Semantic relations including paradigmatic relations are not a priori but are dependent on subject knowledge, scientific findings, and paradigms. As long as information scientists and knowledge organizers isolate themselves from subject knowledge, knowledge organization cannot possibly progress.
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  13. Hjoerland, B.: Does the traditional thesaurus have a place in modern information retrieval? (2016) 0.01
    0.007883994 = product of:
      0.02365198 = sum of:
        0.011805649 = weight(_text_:in in 2915) [ClassicSimilarity], result of:
          0.011805649 = score(doc=2915,freq=14.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.19881277 = fieldWeight in 2915, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2915)
        0.01184633 = weight(_text_:und in 2915) [ClassicSimilarity], result of:
          0.01184633 = score(doc=2915,freq=2.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.12243814 = fieldWeight in 2915, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2915)
      0.33333334 = coord(2/6)
    
    Abstract
    The introduction (1.0) of this article considers the status of the thesaurus within LIS and asks about the future prospect for thesauri. The main following points are: (2.0) Any knowledge organization system (KOS) is today threatened by Google-like systems, and it is therefore important to consider if there still is a need for knowledge organization (KO) in the traditional sense. (3.0) A thesaurus is a somewhat reduced form of KOS compared to, for example, an ontology, and its "bundling" and restricted number of semantic relations has never been justified theoretically or empirically. Which semantic relations are most fruitful for a given task is thus an open question, and different domains may need different kinds of KOS including different sets of relations between terms. (4.0) A KOS is a controlled vocabulary (CV) and should not be considered a "perfect language" (Eco 1995) that is simply able to remove the ambiguity of natural language; rather much ambiguity in language represents a battle between many "voices" (Bakhtin 1981) or "paradigms" (Kuhn 1962). In this perspective, a specific KOS, e.g. a specific thesaurus, is just one "voice" among many voices, and that voice has to demonstrate its authority and utility. It is concluded (5.0) that the traditional thesaurus does not have a place in modern information retrieval, but that more flexible semantic tools based on proper studies of domains will always be important.
    Content
    Beitrag in einem Special issue: The Great Debate: "This House Believes that the Traditional Thesaurus has no Place in Modern Information Retrieval." [19 February 2015, 14:00-17:30 preceded by ISKO UK AGM and followed by networking, wine and nibbles; vgl.: http://www.iskouk.org/content/great-debate].
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  14. Hjoerland, B.: Concept theory (2009) 0.01
    0.00652498 = product of:
      0.01957494 = sum of:
        0.007728611 = weight(_text_:in in 3461) [ClassicSimilarity], result of:
          0.007728611 = score(doc=3461,freq=6.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.1301535 = fieldWeight in 3461, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3461)
        0.01184633 = weight(_text_:und in 3461) [ClassicSimilarity], result of:
          0.01184633 = score(doc=3461,freq=2.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.12243814 = fieldWeight in 3461, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3461)
      0.33333334 = coord(2/6)
    
    Abstract
    Concept theory is an extremely broad, interdisciplinary and complex field of research related to many deep fields with very long historical traditions without much consensus. However, information science and knowledge organization cannot avoid relating to theories of concepts. Knowledge organizing systems (e.g., classification systems, thesauri, and ontologies) should be understood as systems basically organizing concepts and their semantic relations. The same is the case with information retrieval systems. Different theories of concepts have different implications for how to construe, evaluate, and use such systems. Based on a post-Kuhnian view of paradigms, this article put forward arguments that the best understanding and classification of theories of concepts is to view and classify them in accordance with epistemological theories (empiricism, rationalism, historicism, and pragmatism). It is also argued that the historicist and pragmatist understandings of concepts are the most fruitful views and that this understanding may be part of a broader paradigm shift that is also beginning to take place in information science. The importance of historicist and pragmatic theories of concepts for information science is outlined.
    Footnote
    Vgl.: Szostak, R.: Comment on Hjørland's concept theory in: Journal of the American Society for Information Science and Technology. 61(2010) no.5, S. 1076-1077 und die Erwiderung darauf von B. Hjoerland (S.1078-1080)
  15. Hjoerland, B.: ¬The controversy over the concept of information : a rejoinder to Professor Bates (2009) 0.01
    0.0055306843 = product of:
      0.016592052 = sum of:
        0.009198886 = weight(_text_:in in 2748) [ClassicSimilarity], result of:
          0.009198886 = score(doc=2748,freq=34.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.15491365 = fieldWeight in 2748, product of:
              5.8309517 = tf(freq=34.0), with freq of:
                34.0 = termFreq=34.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.01953125 = fieldNorm(doc=2748)
        0.007393166 = product of:
          0.014786332 = sum of:
            0.014786332 = weight(_text_:22 in 2748) [ClassicSimilarity], result of:
              0.014786332 = score(doc=2748,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.09672529 = fieldWeight in 2748, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=2748)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Content
    "This letter considers some main arguments in Professor Bates' article (2008), which is part of our former debate (Bates, 2005,2006; Hjoerland, 2007). Bates (2008) does not write much to restate or enlarge on her theoretical position but is mostly arguing about what she claims Hjorland (2007) ignored or misinterpreted in her two articles. Bates (2008, p. 842) wrote that my arguments did not reflect "a standard of coherence, consistency, and logic that is expected of an argument presented in a scientific journal." My argumentation below will refute this statement. This controversy is whether information should be understood as a subjective phenomenon (alone), as an objective phenomenon (alone), or as a combined objective and a subjective phenomenon ("having it both ways"). Bates (2006) defined "information" (sometimes, e.g., termed "information 1," p. 1042) as an objective phenomenon and "information 2" as a subjective phenomenon. However, sometimes the term "information" is also used as a synonym for "information 2," e.g., "the term information is understood to refer to one or both senses" (p. 1042). Thus, Professor Bates is not consistent in using the terminology that she herself introduces, and confusion in this controversy may be caused by Professor Bates' ambiguity in her use of the term "information." Bates (2006, p. 1033) defined information as an objective phenomenon by joining a definition by Edwin Parker: "Information is the pattern of organization of matter and energy." The argument in Hjoerland (2007) is, by contrast, that information should be understood as a subjective phenomenon all the way down: That neither the objective definition of information nor "having it both ways" is fruitful. This is expressed, for example, by joining Karpatschof's (2000) definition of information as a physical signal relative to a certain release mechanism, which implies that information is not something objective that can be understood independently of an observer or independently of other kinds of mechanism that are programmed to be sensitive to specific attributes of a signal: There are many differences in the world, and each of them is potentially informative in given situations. Regarding Parker's definition, "patterns of organization of matter and energy" are no more than that until they inform somebody about something. When they inform somebody about something, they may be considered information. The following quote is part of the argumentation in Bates (2008): "He contrasts my definition of information as 'observer-independent' with his position that information is 'situational' and adds a list of respected names on the situational side (Hjoerland, 2007, p. 1448). What this sentence, and much of the remainder of his argument, ignores is the fact that my approach accounts for both an observer-independent and a contextual, situational sense of information." Yes, it is correct that I mostly concentrated on refuting Bates' objective definition of information. It is as if Bates expects an overall appraisal of her work rather than providing a specific analysis of the points on which there are disagreements. I see Bates' "having it both ways": a symptom of inconsistence in argumentation.
    Bates (2008, p. 843) further writes about her definition of information: "This is the objectivist foundation, the rock bottom minimum of the meaning of information; it informs both articles throughout." This is exactly the focus of my disagreement. If we take a word in a language, it is understood as both being a "pattern of organization of matter and energy" (e.g., a sound) and carrying meaning. But the relation between the physical sign and its meaning is considered an arbitrary relation in linguistics. Any physical material has the potential of carrying any meaning and to inform somebody. The physical stuff in itself is not information until it is used as a sign. An important issue in this debate is whether Bates' examples demonstrate the usefulness of her own position as opposed to mine. Her example about information seeking concerning navigation and how "the very layout of the ship and the design of the bridge promoted the smooth flow of information from the exterior of the ship to the crew and among the crewmembers" (Bates, 2006, pp. 1042-1043) does not justify Bates' definition of information as an objective phenomenon. The design is made for a purpose, and this purpose determines how information should be defined in this context. Bates' view on "curatorial sciences" (2006, p. 1043) is close to Hjorland's suggestions (2000) about "memory institutions," which is based on the subjective understanding of information. However, she does not relate to this proposal, and she does not argue how the objective understanding of information is related to this example. I therefore conclude that Bates' practical examples do not support her objective definition of information, nor do they support her "having it both ways." Finally, I exemplify the consequences of my understanding of information by showing how an archaeologist and a geologist might represent the same stone differently in information systems. Bates (2008, p. 843) writes about this example: "This position is completely consistent with mine." However, this "consistency" was not recognized by Bates until I published my objections and, therefore, this is an indication that my criticism was needed. I certainly share Professor Bates (2008) advice to read her original articles: They contain much important stuff. I just recommend that the reader ignore the parts that argue about information being an objective phenomenon."
    Date
    22. 3.2009 18:13:27
  16. Hjoerland, B.: Science, Part I : basic conceptions of science and the scientific method (2021) 0.00
    0.0025762038 = product of:
      0.015457222 = sum of:
        0.015457222 = weight(_text_:in in 594) [ClassicSimilarity], result of:
          0.015457222 = score(doc=594,freq=24.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.260307 = fieldWeight in 594, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=594)
      0.16666667 = coord(1/6)
    
    Abstract
    This article is the first in a trilogy about the concept "science". Section 1 considers the historical development of the meaning of the term science and shows its close relation to the terms "knowl­edge" and "philosophy". Section 2 presents four historic phases in the basic conceptualizations of science (1) science as representing absolute certain of knowl­edge based on deductive proof; (2) science as representing absolute certain of knowl­edge based on "the scientific method"; (3) science as representing fallible knowl­edge based on "the scientific method"; (4) science without a belief in "the scientific method" as constitutive, hence the question about the nature of science becomes dramatic. Section 3 presents four basic understandings of the scientific method: Rationalism, which gives priority to a priori thinking; empiricism, which gives priority to the collection, description, and processing of data in a neutral way; historicism, which gives priority to the interpretation of data in the light of "paradigm" and pragmatism, which emphasizes the analysis of the purposes, consequences, and the interests of knowl­edge. The second article in the trilogy focus on different fields studying science, while the final article presets further developments in the concept of science and the general conclusion. Overall, the trilogy illuminates the most important tensions in different conceptualizations of science and argues for the role of information science and knowl­edge organization in the study of science and suggests how "science" should be understood as an object of research in these fields.
    Footnote
    Beitrag in einem Special issue on 'Science and knowledge organization' mit längeren Überblicken zu wichtigen Begriffen der Wissensorgansiation.
    Series
    Reviews of concepts in knowledge organziation
  17. Capurro, R.; Hjoerland, B.: ¬The concept of information (2002) 0.00
    0.0025632903 = product of:
      0.015379742 = sum of:
        0.015379742 = weight(_text_:in in 5079) [ClassicSimilarity], result of:
          0.015379742 = score(doc=5079,freq=66.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.2590022 = fieldWeight in 5079, product of:
              8.124039 = tf(freq=66.0), with freq of:
                66.0 = termFreq=66.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0234375 = fieldNorm(doc=5079)
      0.16666667 = coord(1/6)
    
    Abstract
    The concept of information as we use it in everyday English, in the sense of knowledge communicated, plays a central role in contemporary society. The development and widespread use of computer networks since the end of World War II, and the emergence of information science as a discipline in the 1950s, are evidence of this focus. Although knowledge and its communication are basic phenomena of every human society, it is the rise of information technology and its global impacts that characterize ours as an information society. It is commonplace to consider information as a basic condition for economic development together with capital, labor, and raw material; but what makes information especially significant at present is its digital nature. The impact of information technology an the natural and social sciences in particular has made this everyday notion a highly controversial concept. Claude Shannon's (1948) "A Mathematical Theory of Communication" is a landmark work, referring to the common use of information with its semantic and pragmatic dimensions, while at the same time redefining the concept within an engineering framework. The fact that the concept of knowledge communication has been designated by the word information seems, prima facie, a linguistic happenstance. For a science like information science (IS), it is of course important how fundamental terms are defined; and in IS, as in other fields, the question of how to define information is often raised. This chapter is an attempt to review the status of the concept of information in IS, with reference also to interdisciplinary trends. In scientific discourse, theoretical concepts are not true or false elements or glimpses of some element of reality; rather, they are constructions designed to do a job in the best possible way. Different conceptions of fundamental terms like information are thus more or less fruitful, depending an the theories (and in the end, the practical actions) they are expected to support. In the opening section, we discuss the problem of defining terms from the perspective of the philosophy of science. The history of a word provides us with anecdotes that are tangential to the concept itself. But in our case, the use of the word information points to a specific perspective from which the concept of knowledge communication has been defined. This perspective includes such characteristics as novelty and relevante; i.e., it refers to the process of knowledge transformation, and particularly to selection and interpretation within a specific context. The discussion leads to the questions of why and when this meaning was designated with the word information. We will explore this history, and we believe that our results may help readers better understand the complexity of the concept with regard to its scientific definitions.
    Discussions about the concept of information in other disciplines are very important for IS because many theories and approaches in IS have their origins elsewhere (see the section "Information as an Interdisciplinary Concept" in this chapter). The epistemological concept of information brings into play nonhuman information processes, particularly in physics and biology. And vice versa: the psychic and sociological processes of selection and interpretation may be considered using objective parameters, leaving aside the semantic dimension, or more precisely, by considering objective or situational parameters of interpretation. This concept can be illustrated also in physical terms with regard to release mechanisms, as we suggest. Our overview of the concept of information in the natural sciences as well as in the humanities and social sciences cannot hope to be comprehensive. In most cases, we can refer only to fragments of theories. However, the reader may wish to follow the leads provided in the bibliography. Readers interested primarily in information science may derive most benefit from the section an "Information in Information Science," in which we offer a detailed explanation of diverse views and theories of information within our field; supplementing the recent ARIST chapter by Cornelius (2002). We show that the introduction of the concept of information circa 1950 to the domain of special librarianship and documentation has in itself had serious consequences for the types of knowledge and theories developed in our field. The important question is not only what meaning we give the term in IS, but also how it relates to other basic terms, such as documents, texts, and knowledge. Starting with an objectivist view from the world of information theory and cybernetics, information science has turned to the phenomena of relevance and interpretation as basic aspects of the concept of information. This change is in no way a turn to a subjectivist theory, but an appraisal of different perspectives that may determine in a particular context what is being considered as informative, be it a "thing" (Buckland, 1991b) or a document. Different concepts of information within information science reflect tensions between a subjective and an objective approach. The concept of interpretation or selection may be considered to be the bridge between these two poles. It is important, however, to consider the different professions involved with the interpretation and selection of knowledge. The most important thing in IS (as in information policy) is to consider information as a constitutive forte in society and, thus, recognize the teleological nature of information systems and services (Braman, 1989).
  18. Hjoerland, B.: Epistemology and the socio-cognitive persepctive in information science (2002) 0.00
    0.0025241538 = product of:
      0.015144923 = sum of:
        0.015144923 = weight(_text_:in in 304) [ClassicSimilarity], result of:
          0.015144923 = score(doc=304,freq=16.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.25504774 = fieldWeight in 304, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=304)
      0.16666667 = coord(1/6)
    
    Abstract
    This article presents a socio-cognitive perspective in relation to information science (IS) and information retrieval (IR). The differences between traditional cognitive views and the socio-cognitive or domain-analytic view are outlined. It is claimed that, given elementary skills in computer-based retrieval, people are basically interacting with representations of subject literatures in IR. The kind of knowledge needed to interact with representations of subject literatures is discussed. It is shown how different approaches or "paradigms" in the represented literature imply different information needs and relevance criteria (which users typically cannot express very well, which is why IS cannot primarily rely on user studies). These principles are exemplified by comparing behaviorism, cognitivism, psychoanalysis, and neuroscience as approaches in psychology. The relevance criteria implicit in each position are outlined, and empirical data are provided to prove the theoretical claims. It is further shown that the most general level of relevance criteria is implied by epistemological theories. The article concludes that the fundamental problems of IS and IR are based in epistemology, which therefore becomes the most important allied field for IS.
  19. Hjoerland, B.: Deliberate bias in knowledge organization? (2008) 0.00
    0.0024665273 = product of:
      0.014799163 = sum of:
        0.014799163 = weight(_text_:in in 2510) [ClassicSimilarity], result of:
          0.014799163 = score(doc=2510,freq=22.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.24922498 = fieldWeight in 2510, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2510)
      0.16666667 = coord(1/6)
    
    Content
    "Bias" is normally understood as a negatively loaded word, as something to be avoided or minimized, for example, in statistics or in knowledge organization. Recently Melanie Feinberg suggested, however, that "if we cannot eliminate bias, then we should instead attempt to be more responsible about it and explicitly decide on and defend the perspectives represented in information systems". This view is linked to related views: That knowledge organization is too much concerned with information retrieval and too much described in the mode of scientific discovery, as opposed to the mode of artifact design: "From the literary warrant of Hulme to the terminological warrant of the Classification Research Group (CRG), to Hjorland's domain analysis, the classificationist seems like one who documents and compiles, and not one who actively shapes design." This paper examines these claims, which may be understood as questions about subjectivity and objectivity in classification and about positivism versus pragmatism in research. Is KO an objective and neutral activity? Can it be? Should it be? A dominant view has been that knowledge and KO should be understood as a passive reflection øf an external order. This has been termed the mirror metaphor of knowledge and is related to empiricism and positivism. The opposite view which is in accordance with both Feinberg and Hjorland - states that knowledge organization should be functional and thus reflecting given goals, purposes and values. It is related to pragmatism in philosophy.
    Series
    Advances in knowledge organization; vol.11
    Source
    Culture and identity in knowledge organization: Proceedings of the Tenth International ISKO Conference 5-8 August 2008, Montreal, Canada. Ed. by Clément Arsenault and Joseph T. Tennis
  20. Hjoerland, B.: Concepts, paradigms and knowledge organization (2010) 0.00
    0.0023611297 = product of:
      0.014166778 = sum of:
        0.014166778 = weight(_text_:in in 3512) [ClassicSimilarity], result of:
          0.014166778 = score(doc=3512,freq=14.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.23857531 = fieldWeight in 3512, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=3512)
      0.16666667 = coord(1/6)
    
    Abstract
    It is argued that concepts are the building blocks of knowledge organizing systems (KOS). Objections to this view are considered and answers are provided. By implication the theory of concepts constitutes the foundation for knowledge organization (KO). The theory of concepts is understood as related to and derived from theories of knowledge. Different theories of knowledge such as empiricism, rationalism, historicism and pragmatism imply different theories of concepts. Such different epistemologies and their associated theories of concepts represent different methodological ideals which probably compete in all knowledge domains. Different approaches to KO are also in fundamental ways associated with different theories of concepts. The paper holds that the historicist and pragmatic theory of concept should be considered most valuable. By implication is it is necessary to know about competing theories in the fields being organized. A further implication of the pragmatic view is that the construction of a KOS must be understood as a way of participating in the discourses in the domain that is being represented.
    Series
    Advances in knowledge organization; vol.12
    Source
    Paradigms and conceptual systems in knowledge organization: Proceedings of the Eleventh International ISKO Conference, 23-26 February 2010 Rome, Italy. Edited by Claudio Gnoli and Fulvio Mazzocchi