Search (51 results, page 1 of 3)

  • × theme_ss:"Suchtaktik"
  1. Monchaux, S.; Amadieu, F.; Chevalier, A.; Mariné, C.: Query strategies during information searching : effects of prior domain knowledge and complexity of the information problems to be solved (2015) 0.02
    0.02311211 = product of:
      0.057780277 = sum of:
        0.04542244 = product of:
          0.09084488 = sum of:
            0.09084488 = weight(_text_:problems in 2680) [ClassicSimilarity], result of:
              0.09084488 = score(doc=2680,freq=14.0), product of:
                0.15058853 = queryWeight, product of:
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.036484417 = queryNorm
                0.6032656 = fieldWeight in 2680, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2680)
          0.5 = coord(1/2)
        0.0123578375 = product of:
          0.024715675 = sum of:
            0.024715675 = weight(_text_:22 in 2680) [ClassicSimilarity], result of:
              0.024715675 = score(doc=2680,freq=2.0), product of:
                0.12776221 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036484417 = queryNorm
                0.19345059 = fieldWeight in 2680, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2680)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    This study addresses the impact of domain expertise (i.e. of prior knowledge of the domain) on the performance and query strategies used by users while searching for information. Twenty-four experts (psychology students) and 24 non-experts (students from other disciplines) had to search for psychology information from the Universalis website in order to perform six information problems of varying complexity: two simple problems (the keywords required to complete the task were provided in the problem statement), two more difficult problems (the keywords required had to be inferred) and two impossible problems (no answer was provided by the website). The results showed that participants with prior knowledge in the domain (experts in psychology) performed better (i.e. reached more correct answers after shorter search times) than non-experts. This difference was stronger as the complexity of the problems increased. This study also showed that experts and non-experts displayed different query strategies. Experts reformulated the impossible problems more often than non-experts, because they produced new queries with psychology-related keywords. The participants rarely used thematic category tool and when they did so this did not enhance their performance.
    Date
    25. 1.2016 18:46:22
  2. Tamine, L.; Chouquet, C.: On the impact of domain expertise on query formulation, relevance assessment and retrieval performance in clinical settings (2017) 0.02
    0.018693518 = product of:
      0.046733793 = sum of:
        0.017168067 = product of:
          0.034336135 = sum of:
            0.034336135 = weight(_text_:problems in 3290) [ClassicSimilarity], result of:
              0.034336135 = score(doc=3290,freq=2.0), product of:
                0.15058853 = queryWeight, product of:
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.036484417 = queryNorm
                0.22801295 = fieldWeight in 3290, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3290)
          0.5 = coord(1/2)
        0.029565725 = product of:
          0.05913145 = sum of:
            0.05913145 = weight(_text_:etc in 3290) [ClassicSimilarity], result of:
              0.05913145 = score(doc=3290,freq=2.0), product of:
                0.19761753 = queryWeight, product of:
                  5.4164915 = idf(docFreq=533, maxDocs=44218)
                  0.036484417 = queryNorm
                0.2992217 = fieldWeight in 3290, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.4164915 = idf(docFreq=533, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3290)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The large volumes of medical information available on the web may provide answers for a wide range of users attempting to solve health-related problems. While experts generally utilize reliable resources for diagnosis search and professional development, novices utilize different (social) web resources to obtain information that helps them manage their health or the health of people who they care for. A diverse number of related search topics address clinical diagnosis, advice searching, information sharing, connecting with experts, etc. This paper focuses on the extent to which expertise can impact clinical query formulation, document relevance assessment and retrieval performance in the context of tailoring retrieval models and systems to experts vs. non-experts. The results show that medical domain expertise 1) plays an important role in the lexical representations of information needs; 2) significantly influences the perception of relevance even among users with similar levels of expertise and 3) reinforces the idea that a single ground truth does not exist, thereby leading to the variability of system rankings with respect to the level of user's expertise. The findings of this study presents opportunities for the design of personalized health-related IR systems, but also for providing insights about the evaluation of such systems.
  3. Byström, K.: Information seekers in context : an analysis of the 'doer' in INSU studies (1999) 0.02
    0.016769426 = product of:
      0.08384713 = sum of:
        0.08384713 = sum of:
          0.05913145 = weight(_text_:etc in 297) [ClassicSimilarity], result of:
            0.05913145 = score(doc=297,freq=2.0), product of:
              0.19761753 = queryWeight, product of:
                5.4164915 = idf(docFreq=533, maxDocs=44218)
                0.036484417 = queryNorm
              0.2992217 = fieldWeight in 297, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.4164915 = idf(docFreq=533, maxDocs=44218)
                0.0390625 = fieldNorm(doc=297)
          0.024715675 = weight(_text_:22 in 297) [ClassicSimilarity], result of:
            0.024715675 = score(doc=297,freq=2.0), product of:
              0.12776221 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.036484417 = queryNorm
              0.19345059 = fieldWeight in 297, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=297)
      0.2 = coord(1/5)
    
    Abstract
    In information needs, seeking and use (INSU) research, individuals have most commonly been perceived as users (e.g., Kuhlthau, 1991; Dervin & Nilan, 1986; Dervin, 1989; Belkin, 1980). The concept user originates from the user of libraries and other information services and information systems. Over the years the scope of the concept has become wider and it is nowadays often understood in the sense of seekers of information (e.g., Wilson, 1981; Marchionini, 1995) and users of information (e.g., Streatfield, 1983). Nevertheless, the concept has remained ambiguous by being on the one hand universal and on the other hand extremely specific. The purpose of this paper is to map and evaluate views on people whose information behaviour has been in one way or another the core of our research area. The goal is to shed some light on various relationships between the different aspects of doers in INSU studies. The paper is inspired by Dervin's (1997) analysis of context where she identified among other themes the nature of subject by contrasting a `transcendental individual' with a `decentered subject', and Talja's (1997) presentation about constituting `information' and `user' from the discourse analytic viewpoint as opposed to the cognitive viewpoint. Instead of the metatheoretical approach applied by Dervin and Talja, a more concrete approach is valid in the present analysis where no direct arguments for or against the underlying metatheories are itemised. The focus is on doers in INSU studies leaving other, even closely-related concepts (i.e., information, information seeking, knowledge etc.), outside the scope of the paper.
    Date
    22. 3.2002 9:55:52
  4. Smith, C.L.: Domain-independent search expertise : gaining knowledge in query formulation through guided practice (2017) 0.01
    0.012233125 = product of:
      0.061165623 = sum of:
        0.061165623 = product of:
          0.12233125 = sum of:
            0.12233125 = weight(_text_:exercises in 3643) [ClassicSimilarity], result of:
              0.12233125 = score(doc=3643,freq=2.0), product of:
                0.25947425 = queryWeight, product of:
                  7.11192 = idf(docFreq=97, maxDocs=44218)
                  0.036484417 = queryNorm
                0.47145814 = fieldWeight in 3643, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  7.11192 = idf(docFreq=97, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3643)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    Although modern search systems require minimal skill for meeting simple information needs, most systems provide weak support for gaining advanced skill; hence, the goal of designing systems that guide searchers in developing expertise. Essential to developing such systems are a description of expert search behavior and an understanding of how it may be acquired. The present study contributes a detailed analysis of the query behavior of 10 students as they completed assigned exercises during a semester-long course on expert search. Detailed query logs were coded for three dimensions of query expression: the information structure searched, the type of query term used, and intent of the query with respect to specificity. Patterns of query formulation were found to evidence a progression of instruction, suggesting that the students gained knowledge of fundamental system-independent constructs that underlie expert search, and that domain-independent search expertise may be defined as the ability to use these constructs. Implications for system design are addressed.
  5. Ennis, M.; Sutcliffe, A.G.; Watkinson, S.J.: Towards a predictive model of information seeking : empirical studies of end-user-searching (1999) 0.01
    0.009448289 = product of:
      0.023620723 = sum of:
        0.013734453 = product of:
          0.027468907 = sum of:
            0.027468907 = weight(_text_:problems in 296) [ClassicSimilarity], result of:
              0.027468907 = score(doc=296,freq=2.0), product of:
                0.15058853 = queryWeight, product of:
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.036484417 = queryNorm
                0.18241036 = fieldWeight in 296, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.03125 = fieldNorm(doc=296)
          0.5 = coord(1/2)
        0.009886269 = product of:
          0.019772539 = sum of:
            0.019772539 = weight(_text_:22 in 296) [ClassicSimilarity], result of:
              0.019772539 = score(doc=296,freq=2.0), product of:
                0.12776221 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036484417 = queryNorm
                0.15476047 = fieldWeight in 296, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=296)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Previous empirical studies of searcher behaviour have drawn attention to a wide variety of factors that affect performance; for instance, the display of retrieved results can alter search strategies (Allen 1991, 1994), the information need type influences search behaviour, (Elkerton et al 1984, Marchionini 1995); while the task complexity, reflected in the information need can affect user's search behaviour (Large et al 1994). Furthermore, information source selection (Bassilli 1977), and the user's model of the system and domain impact on the search process (Michel 1994); while motivation (Solomon 1993, Jacobsen et al 1992) and the importance of the information need (Wendt 1969) also influence search duration and the effort a user will employ. Rouse and Rouse (1984) in a review of empirical studies, summarise a wide variety of variables that can effect searching behaviour, including payoff, costs of searching, resource available, amount of information sought, characteristics of the data and conflicts between documents. It appears that user behaviour is inconsistent in the search strategies adopted even for the same search need and system (Davidson 1977, Iivonen 1995). Theories of searcher behaviour have been proposed that provide explanations of aspects of end-user behaviour, such as the evolution of the user's information need and the problems of articulating a query, [Bates (1979, 1989), Markey and Atherton 1978], effective search strategies in browsing and goal directed searches [Marchionini 1995, Belkin (1987, 1993)], the linguistic problem of matching search terms with indexing terms or content of target documents through an expert intermediary (Ingwersen 1982) or cognitive aspects of IR (Kulthau 1984, Ingwersen 1996).
    Date
    22. 3.2002 9:54:13
  6. Sanchiza, M.; Chinb, J.; Chevaliera, A.; Fuc, W.T.; Amadieua, F.; Hed, J.: Searching for information on the web : impact of cognitive aging, prior domain knowledge and complexity of the search problems (2017) 0.01
    0.009213353 = product of:
      0.04606676 = sum of:
        0.04606676 = product of:
          0.09213352 = sum of:
            0.09213352 = weight(_text_:problems in 3294) [ClassicSimilarity], result of:
              0.09213352 = score(doc=3294,freq=10.0), product of:
                0.15058853 = queryWeight, product of:
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.036484417 = queryNorm
                0.61182296 = fieldWeight in 3294, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3294)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    This study focuses on the impact of age, prior domain knowledge and cognitive abilities on performance, query production and navigation strategies during information searching. Twenty older adults and nineteen young adults had to answer 12 information search problems of varying nature within two domain knowledge: health and manga. In each domain, participants had to perform two simple fact-finding problems (keywords provided and answer directly accessible on the search engine results page), two difficult fact-finding problems (keywords had to be inferred) and two open-ended information search problems (multiple answers possible and navigation necessary). Results showed that prior domain knowledge helped older adults improve navigation (i.e. reduced the number of webpages visited and thus decreased the feeling of disorientation), query production and reformulation (i.e. they formulated semantically more specific queries, and they inferred a greater number of new keywords).
  7. Morse, P.M.: Search theory and browsing (1970) 0.01
    0.007909016 = product of:
      0.039545078 = sum of:
        0.039545078 = product of:
          0.079090156 = sum of:
            0.079090156 = weight(_text_:22 in 1448) [ClassicSimilarity], result of:
              0.079090156 = score(doc=1448,freq=2.0), product of:
                0.12776221 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036484417 = queryNorm
                0.61904186 = fieldWeight in 1448, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=1448)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Date
    22. 5.2005 19:53:09
  8. Morse, P.M.: Browsing and search theory (1973) 0.01
    0.0069203894 = product of:
      0.034601945 = sum of:
        0.034601945 = product of:
          0.06920389 = sum of:
            0.06920389 = weight(_text_:22 in 3339) [ClassicSimilarity], result of:
              0.06920389 = score(doc=3339,freq=2.0), product of:
                0.12776221 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036484417 = queryNorm
                0.5416616 = fieldWeight in 3339, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3339)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Date
    22. 5.2005 19:52:29
  9. Branch, J.L.: Investigating the information-seeking process of adolescents : the value of using think alouds and think afters (2000) 0.01
    0.0069203894 = product of:
      0.034601945 = sum of:
        0.034601945 = product of:
          0.06920389 = sum of:
            0.06920389 = weight(_text_:22 in 3924) [ClassicSimilarity], result of:
              0.06920389 = score(doc=3924,freq=2.0), product of:
                0.12776221 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036484417 = queryNorm
                0.5416616 = fieldWeight in 3924, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3924)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Source
    Library and information science research. 22(2000) no.4, S.371-382
  10. Bates, M.J.: Idea tactics (1979) 0.01
    0.0067982078 = product of:
      0.03399104 = sum of:
        0.03399104 = product of:
          0.06798208 = sum of:
            0.06798208 = weight(_text_:problems in 2406) [ClassicSimilarity], result of:
              0.06798208 = score(doc=2406,freq=4.0), product of:
                0.15058853 = queryWeight, product of:
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.036484417 = queryNorm
                0.4514426 = fieldWeight in 2406, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2406)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    An information search tactic is a move made to further a search. In this article, 17 "idea tactics" are presented: tactics to help generate new ideas or solutions to problems in information searching. The focus of these tactics is psychological; they are intended to help improve the information specialist's thinking and creative processes in searching. The tactics are applicable to all kinds of situations - both bibliographical and reference searches, and in both manual and on-line systems. Research leads for the study of idea tactics are suggested, and experimental design problems associated with the testing of all sorts of search tactics are discussed
  11. Shaw, D.: Bibliographic database searching by graduate students in language and literature : search strategies, system interfaces, and relevance judgements (1995) 0.01
    0.0058270353 = product of:
      0.029135175 = sum of:
        0.029135175 = product of:
          0.05827035 = sum of:
            0.05827035 = weight(_text_:problems in 5651) [ClassicSimilarity], result of:
              0.05827035 = score(doc=5651,freq=4.0), product of:
                0.15058853 = queryWeight, product of:
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.036484417 = queryNorm
                0.3869508 = fieldWeight in 5651, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5651)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    Reports on a study conducted at Indiana University in the summer of 1993 which observed 10 advanced graduate students in language and literature studies as they conducted literature searches using databases on CD-ROM. Presents a brief review of related literature on relevance judgements, human-computer interaction (HCI) and information seeking behaviour of humanities students. The search strategies of the graduate students under study were found to be typical of humanities scholars, who create large sets and review records quickly to select relevant items. Factors influencing relevance assessments included language, source of publication, author, and length of work. Participants especially appreciated electronic access to the Modern Language Association (MLA) International Bibliography but encountered problems with the controlled vocabulary and analytic entries for books and proceedings. The study has identified problems with database content, presentation and search interfaces which should be considered by system designers
  12. Spink, A.; Park, M.; Koshman, S.: Factors affecting assigned information problem ordering during Web search : an exploratory study (2006) 0.01
    0.0058270353 = product of:
      0.029135175 = sum of:
        0.029135175 = product of:
          0.05827035 = sum of:
            0.05827035 = weight(_text_:problems in 991) [ClassicSimilarity], result of:
              0.05827035 = score(doc=991,freq=4.0), product of:
                0.15058853 = queryWeight, product of:
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.036484417 = queryNorm
                0.3869508 = fieldWeight in 991, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.046875 = fieldNorm(doc=991)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    Multitasking is the human ability to handle the demands of multiple tasks. Multitasking behavior involves the ordering of multiple tasks and switching between tasks. People often multitask when using information retrieval (IR) technologies as they seek information on more than one information problem over single or multiple search episodes. However, limited studies have examined how people order their information problems, especially during their Web search engine interaction. The aim of our exploratory study was to investigate assigned information problem ordering by forty (40) study participants engaged in Web search. Findings suggest that assigned information problem ordering was influenced by the following factors, including personal interest, problem knowledge, perceived level of information available on the Web, ease of finding information, level of importance and seeking information on information problems in order from general to specific. Personal interest and problem knowledge were the major factors during assigned information problem ordering. Implications of the findings and further research are discussed. The relationship between information problem ordering and gratification theory is an important area for further exploration.
  13. Keen, E.M.: Some aspects of proximity searching in text retrieval systems (1992) 0.01
    0.0054937815 = product of:
      0.027468907 = sum of:
        0.027468907 = product of:
          0.054937813 = sum of:
            0.054937813 = weight(_text_:problems in 6190) [ClassicSimilarity], result of:
              0.054937813 = score(doc=6190,freq=2.0), product of:
                0.15058853 = queryWeight, product of:
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.036484417 = queryNorm
                0.36482072 = fieldWeight in 6190, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6190)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    Describes and evaluates the proximity search facilities in external online systems and in-house retrieval software. Discusses and illustrates capabilities, syntax and circumstances of use. Presents measurements of the overheads required by proximity for storage, record input time and search time. The search strategy narrowing effect of proximity is illustrated by recall and precision test results. Usage and problems lead to a number of design ideas for better implementation: some based on existing Boolean strategies, one on the use of weighted proximity to automatically produce ranked output. A comparison of Boolean, quorum and proximate term pairs distance is included
  14. Chamis, A.Y.: Vocabulary control and search strategies in online searching (1991) 0.01
    0.0054937815 = product of:
      0.027468907 = sum of:
        0.027468907 = product of:
          0.054937813 = sum of:
            0.054937813 = weight(_text_:problems in 820) [ClassicSimilarity], result of:
              0.054937813 = score(doc=820,freq=2.0), product of:
                0.15058853 = queryWeight, product of:
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.036484417 = queryNorm
                0.36482072 = fieldWeight in 820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.0625 = fieldNorm(doc=820)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    Based on the author's 1984 dissertation, this technical and detailed volume looks at problems related to control of terms used in searching among a variety of databases
  15. Pejtersen, A.M.: Design of a classification scheme for fiction based on an analysis of actual user-librarian communication, and use of the scheme for control of librarians' search strategies (1980) 0.00
    0.004943135 = product of:
      0.024715675 = sum of:
        0.024715675 = product of:
          0.04943135 = sum of:
            0.04943135 = weight(_text_:22 in 5835) [ClassicSimilarity], result of:
              0.04943135 = score(doc=5835,freq=2.0), product of:
                0.12776221 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036484417 = queryNorm
                0.38690117 = fieldWeight in 5835, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=5835)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Date
    5. 8.2006 13:22:44
  16. Grau, B.: Finding answers to questions, in text collections or Web, in open domain or specialty domains (2012) 0.00
    0.004855863 = product of:
      0.024279313 = sum of:
        0.024279313 = product of:
          0.048558626 = sum of:
            0.048558626 = weight(_text_:problems in 107) [ClassicSimilarity], result of:
              0.048558626 = score(doc=107,freq=4.0), product of:
                0.15058853 = queryWeight, product of:
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.036484417 = queryNorm
                0.322459 = fieldWeight in 107, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=107)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    This chapter is dedicated to factual question answering, i.e., extracting precise and exact answers to question given in natural language from texts. A question in natural language gives more information than a bag of word query (i.e., a query made of a list of words), and provides clues for finding precise answers. The author first focuses on the presentation of the underlying problems mainly due to the existence of linguistic variations between questions and their answerable pieces of texts for selecting relevant passages and extracting reliable answers. The author first presents how to answer factual question in open domain. The author also presents answering questions in specialty domain as it requires dealing with semi-structured knowledge and specialized terminologies, and can lead to different applications, as information management in corporations for example. Searching answers on the Web constitutes another application frame and introduces specificities linked to Web redundancy or collaborative usage. Besides, the Web is also multilingual, and a challenging problem consists in searching answers in target language documents other than the source language of the question. For all these topics, this chapter presents main approaches and the remaining problems.
  17. Wang, P.; Berry, M.W.; Yang, Y.: Mining longitudinal Web queries : trends and patterns (2003) 0.00
    0.0048070587 = product of:
      0.024035294 = sum of:
        0.024035294 = product of:
          0.048070587 = sum of:
            0.048070587 = weight(_text_:problems in 6561) [ClassicSimilarity], result of:
              0.048070587 = score(doc=6561,freq=2.0), product of:
                0.15058853 = queryWeight, product of:
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.036484417 = queryNorm
                0.31921813 = fieldWeight in 6561, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6561)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    This project analyzed 541,920 user queries submitted to and executed in an academic Website during a four-year period (May 1997 to May 2001) using a relational database. The purpose of the study is three-fold: (1) to understand Web users' query behavior; (2) to identify problems encountered by these Web users; (3) to develop appropriate techniques for optimization of query analysis and mining. The linguistic analyses focus an query structures, lexicon, and word associations using statistical measures such as Zipf distribution and mutual information. A data model with finest granularity is used for data storage and iterative analyses. Patterns and trends of querying behavior are identified and compared with previous studies.
  18. Wildemuth, B.M.: ¬The effects of domain knowledge on search tactic formulation (2004) 0.00
    0.0041203364 = product of:
      0.02060168 = sum of:
        0.02060168 = product of:
          0.04120336 = sum of:
            0.04120336 = weight(_text_:problems in 2221) [ClassicSimilarity], result of:
              0.04120336 = score(doc=2221,freq=2.0), product of:
                0.15058853 = queryWeight, product of:
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.036484417 = queryNorm
                0.27361554 = fieldWeight in 2221, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2221)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    A search tactic is a set of search moves that are temporally and semantically related. The current study examined the tactics of medical students searching a factual database in microbiology. The students answered problems and searched the database an three occasions over a 9-month period. Their search moves were analyzed in terms of the changes in search terms used from one cycle to the next, using two different analysis methods. Common patterns were found in the students' search tactics; the most common approach was the specification of a concept, followed by the addition of one or more concepts, gradually narrowing the retrieved set before it was displayed. It was also found that the search tactics changed over time as the students' domain knowledge changed. These results have important implications for designers in developing systems that will support users' preferred ways of formulating searches. In addition, the research methods used (the coding scheme and the two data analysis methods-zero-order state transition matrices and maximal repeating patterns [MRP] analysis) are discussed in terms of their validity in future studies of search tactics.
  19. Lin, S.-j.: Internetworking of factors affecting successive searches over multiple episodes (2005) 0.00
    0.0041203364 = product of:
      0.02060168 = sum of:
        0.02060168 = product of:
          0.04120336 = sum of:
            0.04120336 = weight(_text_:problems in 3330) [ClassicSimilarity], result of:
              0.04120336 = score(doc=3330,freq=2.0), product of:
                0.15058853 = queryWeight, product of:
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.036484417 = queryNorm
                0.27361554 = fieldWeight in 3330, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3330)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    Successive information searches are fairly common. To enhance the understanding of the behavior, this study attempted to improve both the descriptive and explanatory power of the Multiple Information Seeking Episodes (MISE) model, a conceptual model characterizing factors affecting successive searches. It empirically observed how the key factors in the information seeking process in the MISE model evolve over multiple search sessions and explained how those factors are affected by other factors associated with searchers, search activity, search context, systems, information attainment, and information-use activities. The validated and enriched MISE model can be extended to serve the basis for future studies in other complex searches process such as multi-tasking and collaborative searches, and can also help identify problems that users face and thus derive requirements for system support.
  20. Pharo, N.; Järvelin, K.: "Irrational" searchers and IR-rational researchers (2006) 0.00
    0.0041203364 = product of:
      0.02060168 = sum of:
        0.02060168 = product of:
          0.04120336 = sum of:
            0.04120336 = weight(_text_:problems in 4922) [ClassicSimilarity], result of:
              0.04120336 = score(doc=4922,freq=2.0), product of:
                0.15058853 = queryWeight, product of:
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.036484417 = queryNorm
                0.27361554 = fieldWeight in 4922, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4922)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    In this article the authors look at the prescriptions advocated by Web search textbooks in the light of a selection of empirical data of real Web information search processes. They use the strategy of disjointed incrementalism, which is a theoretical foundation from decision making, to focus an how people face complex problems, and claim that such problem solving can be compared to the tasks searchers perform when interacting with the Web. The findings suggest that textbooks an Web searching should take into account that searchers only tend to take a certain number of sources into consideration, that the searchers adjust their goals and objectives during searching, and that searchers reconsider the usefulness of sources at different stages of their work tasks as well as their search tasks.

Languages

  • e 50
  • d 1
  • More… Less…

Types

  • a 47
  • m 4