Search (86 results, page 1 of 5)

  • × theme_ss:"Indexierungsstudien"
  1. White, H.; Willis, C.; Greenberg, J.: HIVEing : the effect of a semantic web technology on inter-indexer consistency (2014) 0.04
    0.043574527 = product of:
      0.119829945 = sum of:
        0.07568369 = weight(_text_:effect in 1781) [ClassicSimilarity], result of:
          0.07568369 = score(doc=1781,freq=4.0), product of:
            0.18289955 = queryWeight, product of:
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.034531306 = queryNorm
            0.41379923 = fieldWeight in 1781, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1781)
        0.0139941955 = weight(_text_:of in 1781) [ClassicSimilarity], result of:
          0.0139941955 = score(doc=1781,freq=18.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.25915858 = fieldWeight in 1781, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1781)
        0.018455777 = weight(_text_:on in 1781) [ClassicSimilarity], result of:
          0.018455777 = score(doc=1781,freq=8.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.24300331 = fieldWeight in 1781, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1781)
        0.011696288 = product of:
          0.023392577 = sum of:
            0.023392577 = weight(_text_:22 in 1781) [ClassicSimilarity], result of:
              0.023392577 = score(doc=1781,freq=2.0), product of:
                0.12092275 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.034531306 = queryNorm
                0.19345059 = fieldWeight in 1781, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1781)
          0.5 = coord(1/2)
      0.36363637 = coord(4/11)
    
    Abstract
    Purpose - The purpose of this paper is to examine the effect of the Helping Interdisciplinary Vocabulary Engineering (HIVE) system on the inter-indexer consistency of information professionals when assigning keywords to a scientific abstract. This study examined first, the inter-indexer consistency of potential HIVE users; second, the impact HIVE had on consistency; and third, challenges associated with using HIVE. Design/methodology/approach - A within-subjects quasi-experimental research design was used for this study. Data were collected using a task-scenario based questionnaire. Analysis was performed on consistency results using Hooper's and Rolling's inter-indexer consistency measures. A series of t-tests was used to judge the significance between consistency measure results. Findings - Results suggest that HIVE improves inter-indexing consistency. Working with HIVE increased consistency rates by 22 percent (Rolling's) and 25 percent (Hooper's) when selecting relevant terms from all vocabularies. A statistically significant difference exists between the assignment of free-text keywords and machine-aided keywords. Issues with homographs, disambiguation, vocabulary choice, and document structure were all identified as potential challenges. Research limitations/implications - Research limitations for this study can be found in the small number of vocabularies used for the study. Future research will include implementing HIVE into the Dryad Repository and studying its application in a repository system. Originality/value - This paper showcases several features used in HIVE system. By using traditional consistency measures to evaluate a semantic web technology, this paper emphasizes the link between traditional indexing and next generation machine-aided indexing (MAI) tools.
    Source
    Journal of documentation. 70(2014) no.3, S.307-329
  2. Boyce, B.R.; McLain, J.P.: Entry point depth and online search using a controlled vocabulary (1989) 0.04
    0.03936281 = product of:
      0.14433031 = sum of:
        0.105957165 = weight(_text_:effect in 2287) [ClassicSimilarity], result of:
          0.105957165 = score(doc=2287,freq=4.0), product of:
            0.18289955 = queryWeight, product of:
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.034531306 = queryNorm
            0.5793189 = fieldWeight in 2287, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2287)
        0.0159967 = weight(_text_:of in 2287) [ClassicSimilarity], result of:
          0.0159967 = score(doc=2287,freq=12.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.29624295 = fieldWeight in 2287, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2287)
        0.022376444 = weight(_text_:on in 2287) [ClassicSimilarity], result of:
          0.022376444 = score(doc=2287,freq=6.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.29462588 = fieldWeight in 2287, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2287)
      0.27272728 = coord(3/11)
    
    Abstract
    The depth of indexing, the number of terms assigned on average to each document in a retrieval system as entry points, has a significantly effect on the standard retrieval performance measures in modern commercial retrieval systems, just as it did in previous experimental work. Tests on the effect of basic index search, as opposed to controlled vocabulary search, in these real systems are quite different than traditional comparisons of free text searching with controlled vocabulary searching. In modern commercial systems the controlled vocabulary serves as a precision device, since the strucure of the default for unqualified search terms in these systems requires that it do so.
    Source
    Journal of the American Society for Information Science. 40(1989), S.273-276
  3. Burgin, R.: ¬The effect of indexing exhaustivity on retrieval performance (1991) 0.03
    0.033053342 = product of:
      0.121195585 = sum of:
        0.090820424 = weight(_text_:effect in 5262) [ClassicSimilarity], result of:
          0.090820424 = score(doc=5262,freq=4.0), product of:
            0.18289955 = queryWeight, product of:
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.034531306 = queryNorm
            0.49655905 = fieldWeight in 5262, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.046875 = fieldNorm(doc=5262)
        0.011195358 = weight(_text_:of in 5262) [ClassicSimilarity], result of:
          0.011195358 = score(doc=5262,freq=8.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.20732689 = fieldWeight in 5262, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=5262)
        0.01917981 = weight(_text_:on in 5262) [ClassicSimilarity], result of:
          0.01917981 = score(doc=5262,freq=6.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.25253648 = fieldWeight in 5262, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=5262)
      0.27272728 = coord(3/11)
    
    Abstract
    The study was based on the collection examnined by W.H. Shaw (Inf. proc. man. 26(1990) no.6, S.693-703, 705-718), a test collection of 1239 articles, indexed with the term cystic fibrosis; and 100 queries with 3 sets of relevance evaluations from subject experts. The effect of variations in indexing exhaustivity on retrieval performance in a vector space retrieval system was investigated by using a term weight threshold to construct different document representations for a test collection. Retrieval results showed that retrieval performance, as measured by the mean optimal measure for all queries at a term weight threshold, was highest at the most exhaustive representation, and decreased slightly as terms were eliminated and the indexing representation became less exhaustive. The findings suggest that the vector space model is more robust against variations in indexing exhaustivity that is the single-link clustering model
  4. Wolfram, D.; Zhang, J.: ¬An investigation of the influence of indexing exhaustivity and term distributions on a document space (2002) 0.02
    0.022977492 = product of:
      0.0842508 = sum of:
        0.053516448 = weight(_text_:effect in 5238) [ClassicSimilarity], result of:
          0.053516448 = score(doc=5238,freq=2.0), product of:
            0.18289955 = queryWeight, product of:
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.034531306 = queryNorm
            0.2926002 = fieldWeight in 5238, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5238)
        0.014751178 = weight(_text_:of in 5238) [ClassicSimilarity], result of:
          0.014751178 = score(doc=5238,freq=20.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.27317715 = fieldWeight in 5238, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5238)
        0.015983174 = weight(_text_:on in 5238) [ClassicSimilarity], result of:
          0.015983174 = score(doc=5238,freq=6.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.21044704 = fieldWeight in 5238, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5238)
      0.27272728 = coord(3/11)
    
    Abstract
    Wolfram and Zhang are interested in the effect of different indexing exhaustivity, by which they mean the number of terms chosen, and of different index term distributions and different term weighting methods on the resulting document cluster organization. The Distance Angle Retrieval Environment, DARE, which provides a two dimensional display of retrieved documents was used to represent the document clusters based upon a document's distance from the searcher's main interest, and on the angle formed by the document, a point representing a minor interest, and the point representing the main interest. If the centroid and the origin of the document space are assigned as major and minor points the average distance between documents and the centroid can be measured providing an indication of cluster organization. in the form of a size normalized similarity measure. Using 500 records from NTIS and nine models created by intersecting low, observed, and high exhaustivity levels (based upon a negative binomial distribution) with shallow, observed, and steep term distributions (based upon a Zipf distribution) simulation runs were preformed using inverse document frequency, inter-document term frequency, and inverse document frequency based upon both inter and intra-document frequencies. Low exhaustivity and shallow distributions result in a more dense document space and less effective retrieval. High exhaustivity and steeper distributions result in a more diffuse space.
    Source
    Journal of the American Society for Information Science and Technology. 53(2002) no.11, S.944-952
  5. Chen, X.: ¬The influence of existing consistency measures on the relationship between indexing consistency and exhaustivity (2008) 0.02
    0.022079572 = product of:
      0.080958426 = sum of:
        0.05263353 = weight(_text_:higher in 2502) [ClassicSimilarity], result of:
          0.05263353 = score(doc=2502,freq=2.0), product of:
            0.18138453 = queryWeight, product of:
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.034531306 = queryNorm
            0.2901765 = fieldWeight in 2502, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2502)
        0.012341722 = weight(_text_:of in 2502) [ClassicSimilarity], result of:
          0.012341722 = score(doc=2502,freq=14.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.22855641 = fieldWeight in 2502, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2502)
        0.015983174 = weight(_text_:on in 2502) [ClassicSimilarity], result of:
          0.015983174 = score(doc=2502,freq=6.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.21044704 = fieldWeight in 2502, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2502)
      0.27272728 = coord(3/11)
    
    Content
    Consistency studies have discussed the relationship between indexing consistency and exhaustivity, and it commonly accepted that higher exhaustivity results in lower indexing consistency. However, this issue has been oversimplified, and previous studies contain significant misinterpretations. The aim of this study is investigate the relationship between consistency and exhaustivity based on a large sample and to analyse the misinterpretations in earlier studies. A sample of 3,307 monographs, i.e. 6,614 records was drawn from two Chinese bibliographic catalogues. Indexing consistency was measured using two formulae which were popular in previous indexing consistency studies. A relatively high level of consistency was found (64.21% according to the first formula, 70.71% according to the second). Regarding the relationship between consistency and exhaustivity, it was found that when two indexers had identical exhaustivity, indexing consistency was substantially high. On the contrary, when they had different levels of exhaustivity, consistency was significantly low. It was inevitable with the use of the two formulae. Moreover, a detailed discussion was conducted to analyse the misinterpretations in previous studies.
    Source
    Culture and identity in knowledge organization: Proceedings of the Tenth International ISKO Conference 5-8 August 2008, Montreal, Canada. Ed. by Clément Arsenault and Joseph T. Tennis
  6. Keen, E.M.: Designing and testing an interactive ranked retrieval system for professional searchers (1994) 0.02
    0.021258047 = product of:
      0.07794617 = sum of:
        0.05263353 = weight(_text_:higher in 1066) [ClassicSimilarity], result of:
          0.05263353 = score(doc=1066,freq=2.0), product of:
            0.18138453 = queryWeight, product of:
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.034531306 = queryNorm
            0.2901765 = fieldWeight in 1066, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1066)
        0.009329465 = weight(_text_:of in 1066) [ClassicSimilarity], result of:
          0.009329465 = score(doc=1066,freq=8.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.17277241 = fieldWeight in 1066, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1066)
        0.015983174 = weight(_text_:on in 1066) [ClassicSimilarity], result of:
          0.015983174 = score(doc=1066,freq=6.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.21044704 = fieldWeight in 1066, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1066)
      0.27272728 = coord(3/11)
    
    Abstract
    Reports 3 explorations of ranked system design. 2 tests used a 'cystic fibrosis' test collection with 100 queries. Experiment 1 compared a Boolean with a ranked interactive system using a subject qualified trained searcher, and reporting recall and precision results. Experiment 2 compared 15 different ranked match algorithms in a batch mode using 2 test collections, and included some new proximate pairs and term weighting approaches. Experiment 3 is a design plan for an interactive ranked prototype offering mid search algorithm choices plus other manual search devices (such as obligatory and unwanted terms), as influenced by thinking aloud comments from experiment 1. Concludes that, in Boolean versus ranked using inverse collection frequency, the searcher inspected more records on ranked than Boolean and so achieved a higher recall but lower precision; however, the presentation order of the relevant records, was, on average, very similar in both systems. Concludes also that: query reformulation was quite strongly practised in ranked searching but does not appear to have been effective; the term pairs proximate weithing methods in experiment 2 enhanced precision on both test collections when used with inverse collection frequency weighting (ICF); and the design plan for an interactive prototype adds to a selection of match algorithms other devices, such as obligatory and unwanted term marking, evidence for this being found from think aloud comments
    Source
    Journal of information science. 20(1994) no.6, S.389-398
  7. Lin, Y,-l.; Trattner, C.; Brusilovsky, P.; He, D.: ¬The impact of image descriptions on user tagging behavior : a study of the nature and functionality of crowdsourced tags (2015) 0.02
    0.019793794 = product of:
      0.07257724 = sum of:
        0.042106826 = weight(_text_:higher in 2159) [ClassicSimilarity], result of:
          0.042106826 = score(doc=2159,freq=2.0), product of:
            0.18138453 = queryWeight, product of:
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.034531306 = queryNorm
            0.23214121 = fieldWeight in 2159, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.03125 = fieldNorm(doc=2159)
        0.013963064 = weight(_text_:of in 2159) [ClassicSimilarity], result of:
          0.013963064 = score(doc=2159,freq=28.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.25858206 = fieldWeight in 2159, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=2159)
        0.016507352 = weight(_text_:on in 2159) [ClassicSimilarity], result of:
          0.016507352 = score(doc=2159,freq=10.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.21734878 = fieldWeight in 2159, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.03125 = fieldNorm(doc=2159)
      0.27272728 = coord(3/11)
    
    Abstract
    Crowdsourcing has emerged as a way to harvest social wisdom from thousands of volunteers to perform a series of tasks online. However, little research has been devoted to exploring the impact of various factors such as the content of a resource or crowdsourcing interface design on user tagging behavior. Although images' titles and descriptions are frequently available in image digital libraries, it is not clear whether they should be displayed to crowdworkers engaged in tagging. This paper focuses on offering insight to the curators of digital image libraries who face this dilemma by examining (i) how descriptions influence the user in his/her tagging behavior and (ii) how this relates to the (a) nature of the tags, (b) the emergent folksonomy, and (c) the findability of the images in the tagging system. We compared two different methods for collecting image tags from Amazon's Mechanical Turk's crowdworkers-with and without image descriptions. Several properties of generated tags were examined from different perspectives: diversity, specificity, reusability, quality, similarity, descriptiveness, and so on. In addition, the study was carried out to examine the impact of image description on supporting users' information seeking with a tag cloud interface. The results showed that the properties of tags are affected by the crowdsourcing approach. Tags from the "with description" condition are more diverse and more specific than tags from the "without description" condition, while the latter has a higher tag reuse rate. A user study also revealed that different tag sets provided different support for search. Tags produced "with description" shortened the path to the target results, whereas tags produced without description increased user success in the search task.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.9, S.1785-1798
  8. Cleverdon, C.W.: ASLIB Cranfield Research Project : Report on the first stage of an investigation into the comparative efficiency of indexing systems (1960) 0.02
    0.018984262 = product of:
      0.06960896 = sum of:
        0.01939093 = weight(_text_:of in 6158) [ClassicSimilarity], result of:
          0.01939093 = score(doc=6158,freq=6.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.3591007 = fieldWeight in 6158, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.09375 = fieldNorm(doc=6158)
        0.022146935 = weight(_text_:on in 6158) [ClassicSimilarity], result of:
          0.022146935 = score(doc=6158,freq=2.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.29160398 = fieldWeight in 6158, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.09375 = fieldNorm(doc=6158)
        0.02807109 = product of:
          0.05614218 = sum of:
            0.05614218 = weight(_text_:22 in 6158) [ClassicSimilarity], result of:
              0.05614218 = score(doc=6158,freq=2.0), product of:
                0.12092275 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.034531306 = queryNorm
                0.46428138 = fieldWeight in 6158, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6158)
          0.5 = coord(1/2)
      0.27272728 = coord(3/11)
    
    Footnote
    Rez. in: College and research libraries 22(1961) no.3, S.228 (G. Jahoda)
    Imprint
    Cranfield : College of Aeronautics
  9. Neshat, N.; Horri, A.: ¬A study of subject indexing consistency between the National Library of Iran and Humanities Libraries in the area of Iranian studies (2006) 0.02
    0.015080931 = product of:
      0.055296745 = sum of:
        0.020651652 = weight(_text_:of in 230) [ClassicSimilarity], result of:
          0.020651652 = score(doc=230,freq=20.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.38244802 = fieldWeight in 230, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=230)
        0.01827029 = weight(_text_:on in 230) [ClassicSimilarity], result of:
          0.01827029 = score(doc=230,freq=4.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.24056101 = fieldWeight in 230, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=230)
        0.016374804 = product of:
          0.03274961 = sum of:
            0.03274961 = weight(_text_:22 in 230) [ClassicSimilarity], result of:
              0.03274961 = score(doc=230,freq=2.0), product of:
                0.12092275 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.034531306 = queryNorm
                0.2708308 = fieldWeight in 230, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=230)
          0.5 = coord(1/2)
      0.27272728 = coord(3/11)
    
    Abstract
    This study represents an attempt to compare indexing consistency between the catalogers of the National Library of Iran (NLI) on one side and 12 major academic and special libraries located in Tehran on the other. The research findings indicate that in 75% of the libraries the subject inconsistency values are 60% to 85%. In terms of subject classes, the consistency values are 10% to 35.2%, the mean of which is 22.5%. Moreover, the findings show that whenever the number of assigned terms increases, the probability of consistency decreases. This confirms Markey's findings in 1984.
    Date
    4. 1.2007 10:22:26
  10. Peset, F.; Garzón-Farinós, F.; González, L.M.; García-Massó, X.; Ferrer-Sapena, A.; Toca-Herrera, J.L.; Sánchez-Pérez, E.A.: Survival analysis of author keywords : an application to the library and information sciences area (2020) 0.01
    0.012962266 = product of:
      0.07129246 = sum of:
        0.05263353 = weight(_text_:higher in 5774) [ClassicSimilarity], result of:
          0.05263353 = score(doc=5774,freq=2.0), product of:
            0.18138453 = queryWeight, product of:
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.034531306 = queryNorm
            0.2901765 = fieldWeight in 5774, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5774)
        0.01865893 = weight(_text_:of in 5774) [ClassicSimilarity], result of:
          0.01865893 = score(doc=5774,freq=32.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.34554482 = fieldWeight in 5774, product of:
              5.656854 = tf(freq=32.0), with freq of:
                32.0 = termFreq=32.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5774)
      0.18181819 = coord(2/11)
    
    Abstract
    Our purpose is to adapt a statistical method for the analysis of discrete numerical series to the keywords appearing in scientific articles of a given area. As an example, we apply our methodological approach to the study of the keywords in the Library and Information Sciences (LIS) area. Our objective is to detect the new author keywords that appear in a fixed knowledge area in the period of 1 year in order to quantify the probabilities of survival for 10 years as a function of the impact of the journals where they appeared. Many of the new keywords appearing in the LIS field are ephemeral. Actually, more than half are never used again. In general, the terms most commonly used in the LIS area come from other areas. The average survival time of these keywords is approximately 3 years, being slightly higher in the case of words that were published in journals classified in the second quartile of the area. We believe that measuring the appearance and disappearance of terms will allow understanding some relevant aspects of the evolution of a discipline, providing in this way a new bibliometric approach.
    Source
    Journal of the Association for Information Science and Technology. 71(2020) no.4, S.462-473
  11. Bade, D.: ¬The creation and persistence of misinformation in shared library catalogs : language and subject knowledge in a technological era (2002) 0.01
    0.010749427 = product of:
      0.039414562 = sum of:
        0.013193856 = weight(_text_:of in 1858) [ClassicSimilarity], result of:
          0.013193856 = score(doc=1858,freq=100.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.24433708 = fieldWeight in 1858, product of:
              10.0 = tf(freq=100.0), with freq of:
                100.0 = termFreq=100.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.015625 = fieldNorm(doc=1858)
        0.021542193 = weight(_text_:technological in 1858) [ClassicSimilarity], result of:
          0.021542193 = score(doc=1858,freq=2.0), product of:
            0.18347798 = queryWeight, product of:
              5.3133807 = idf(docFreq=591, maxDocs=44218)
              0.034531306 = queryNorm
            0.117410235 = fieldWeight in 1858, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.3133807 = idf(docFreq=591, maxDocs=44218)
              0.015625 = fieldNorm(doc=1858)
        0.0046785153 = product of:
          0.0093570305 = sum of:
            0.0093570305 = weight(_text_:22 in 1858) [ClassicSimilarity], result of:
              0.0093570305 = score(doc=1858,freq=2.0), product of:
                0.12092275 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.034531306 = queryNorm
                0.07738023 = fieldWeight in 1858, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.015625 = fieldNorm(doc=1858)
          0.5 = coord(1/2)
      0.27272728 = coord(3/11)
    
    Date
    22. 9.1997 19:16:05
    Footnote
    Rez. in JASIST 54(2003) no.4, S.356-357 (S.J. Lincicum): "Reliance upon shared cataloging in academic libraries in the United States has been driven largely by the need to reduce the expense of cataloging operations without muck regard for the Impact that this approach might have an the quality of the records included in local catalogs. In recent years, ever increasing pressures have prompted libraries to adopt practices such as "rapid" copy cataloging that purposely reduce the scrutiny applied to bibliographic records downloaded from shared databases, possibly increasing the number of errors that slip through unnoticed. Errors in bibliographic records can lead to serious problems for library catalog users. If the data contained in bibliographic records is inaccurate, users will have difficulty discovering and recognizing resources in a library's collection that are relevant to their needs. Thus, it has become increasingly important to understand the extent and nature of errors that occur in the records found in large shared bibliographic databases, such as OCLC WorldCat, to develop cataloging practices optimized for the shared cataloging environment. Although this monograph raises a few legitimate concerns about recent trends in cataloging practice, it fails to provide the "detailed look" at misinformation in library catalogs arising from linguistic errors and mistakes in subject analysis promised by the publisher. A basic premise advanced throughout the text is that a certain amount of linguistic and subject knowledge is required to catalog library materials effectively. The author emphasizes repeatedly that most catalogers today are asked to catalog an increasingly diverse array of materials, and that they are often required to work in languages or subject areas of which they have little or no knowledge. He argues that the records contributed to shared databases are increasingly being created by catalogers with inadequate linguistic or subject expertise. This adversely affects the quality of individual library catalogs because errors often go uncorrected as records are downloaded from shared databases to local catalogs by copy catalogers who possess even less knowledge. Calling misinformation an "evil phenomenon," Bade states that his main goal is to discuss, "two fundamental types of misinformation found in bibliographic and authority records in library catalogs: that arising from linguistic errors, and that caused by errors in subject analysis, including missing or wrong subject headings" (p. 2). After a superficial discussion of "other" types of errors that can occur in bibliographic records, such as typographical errors and errors in the application of descriptive cataloging rules, Bade begins his discussion of linguistic errors. He asserts that sharing bibliographic records created by catalogers with inadequate linguistic or subject knowledge has, "disastrous effects an the library community" (p. 6). To support this bold assertion, Bade provides as evidence little more than a laundry list of errors that he has personally observed in bibliographic records over the years. When he eventually cites several studies that have addressed the availability and quality of records available for materials in languages other than English, he fails to describe the findings of these studies in any detail, let alone relate the findings to his own observations in a meaningful way. Bade claims that a lack of linguistic expertise among catalogers is the "primary source for linguistic misinformation in our databases" (p. 10), but he neither cites substantive data from existing studies nor provides any new data regarding the overall level of linguistic knowledge among catalogers to support this claim. The section concludes with a brief list of eight sensible, if unoriginal, suggestions for coping with the challenge of cataloging materials in unfamiliar languages.
    Bade begins his discussion of errors in subject analysis by summarizing the contents of seven records containing what he considers to be egregious errors. The examples were drawn only from items that he has encountered in the course of his work. Five of the seven records were full-level ("I" level) records for Eastern European materials created between 1996 and 2000 in the OCLC WorldCat database. The final two examples were taken from records created by Bade himself over an unspecified period of time. Although he is to be commended for examining the actual items cataloged and for examining mostly items that he claims to have adequate linguistic and subject expertise to evaluate reliably, Bade's methodology has major flaws. First and foremost, the number of examples provided is completely inadequate to draw any conclusions about the extent of the problem. Although an in-depth qualitative analysis of a small number of records might have yielded some valuable insight into factors that contribute to errors in subject analysis, Bade provides no Information about the circumstances under which the live OCLC records he critiques were created. Instead, he offers simplistic explanations for the errors based solely an his own assumptions. He supplements his analysis of examples with an extremely brief survey of other studies regarding errors in subject analysis, which consists primarily of criticism of work done by Sheila Intner. In the end, it is impossible to draw any reliable conclusions about the nature or extent of errors in subject analysis found in records in shared bibliographic databases based an Bade's analysis. In the final third of the essay, Bade finally reveals his true concern: the deintellectualization of cataloging. It would strengthen the essay tremendously to present this as the primary premise from the very beginning, as this section offers glimpses of a compelling argument. Bade laments, "Many librarians simply do not sec cataloging as an intellectual activity requiring an educated mind" (p. 20). Commenting an recent trends in copy cataloging practice, he declares, "The disaster of our time is that this work is being done more and more by people who can neither evaluate nor correct imported errors and offen are forbidden from even thinking about it" (p. 26). Bade argues that the most valuable content found in catalog records is the intellectual content contributed by knowledgeable catalogers, and he asserts that to perform intellectually demanding tasks such as subject analysis reliably and effectively, catalogers must have the linguistic and subject knowledge required to gain at least a rudimentary understanding of the materials that they describe. He contends that requiring catalogers to quickly dispense with materials in unfamiliar languages and subjects clearly undermines their ability to perform the intellectual work of cataloging and leads to an increasing number of errors in the bibliographic records contributed to shared databases.
    Arguing that catalogers need to work both quickly and accurately, Bade maintains that employing specialists is the most efficient and effective way to achieve this outcome. Far less compelling than these arguments are Bade's concluding remarks, in which he offers meager suggestions for correcting the problems as he sees them. Overall, this essay is little more than a curmudgeon's diatribe. Addressed primarily to catalogers and library administrators, the analysis presented is too superficial to assist practicing catalogers or cataloging managers in developing solutions to any systemic problems in current cataloging practice, and it presents too little evidence of pervasive problems to convince budget-conscious library administrators of a need to alter practice or to increase their investment in local cataloging operations. Indeed, the reliance upon anecdotal evidence and the apparent nit-picking that dominate the essay might tend to reinforce a negative image of catalogers in the minds of some. To his credit, Bade does provide an important reminder that it is the intellectual contributions made by thousands of erudite catalogers that have made shared cataloging a successful strategy for improving cataloging efficiency. This is an important point that often seems to be forgotten in academic libraries when focus centers an cutting costs. Had Bade focused more narrowly upon the issue of deintellectualization of cataloging and written a carefully structured essay to advance this argument, this essay might have been much more effective." - KO 29(2002) nos.3/4, S.236-237 (A. Sauperl)
    Imprint
    Urbana-Champaign, IL : Illinois University at Urbana-Champaign, Graduate School of Library and Information Science
  12. Subrahmanyam, B.: Library of Congress Classification numbers : issues of consistency and their implications for union catalogs (2006) 0.01
    0.009523193 = product of:
      0.034918375 = sum of:
        0.0139941955 = weight(_text_:of in 5784) [ClassicSimilarity], result of:
          0.0139941955 = score(doc=5784,freq=18.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.25915858 = fieldWeight in 5784, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5784)
        0.009227889 = weight(_text_:on in 5784) [ClassicSimilarity], result of:
          0.009227889 = score(doc=5784,freq=2.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.121501654 = fieldWeight in 5784, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5784)
        0.011696288 = product of:
          0.023392577 = sum of:
            0.023392577 = weight(_text_:22 in 5784) [ClassicSimilarity], result of:
              0.023392577 = score(doc=5784,freq=2.0), product of:
                0.12092275 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.034531306 = queryNorm
                0.19345059 = fieldWeight in 5784, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5784)
          0.5 = coord(1/2)
      0.27272728 = coord(3/11)
    
    Abstract
    This study examined Library of Congress Classification (LCC)-based class numbers assigned to a representative sample of 200 titles in 52 American library systems to determine the level of consistency within and across those systems. The results showed that under the condition that a library system has a title, the probability of that title having the same LCC-based class number across library systems is greater than 85 percent. An examination of 121 titles displaying variations in class numbers among library systems showed certain titles (for example, multi-foci titles, titles in series, bibliographies, and fiction) lend themselves to alternate class numbers. Others were assigned variant numbers either due to latitude in the schedules or for reasons that cannot be pinpointed. With increasing dependence on copy cataloging, the size of such variations may continue to decrease. As the preferred class number with its alternates represents a title more fully than just the preferred class number, this paper argues for continued use of alternates by library systems and for finding a method to link alternate class numbers to preferred class numbers for enriched subject access through local and union catalogs.
    Date
    10. 9.2000 17:38:22
  13. Cleverdon, C.W.: Aslib Cranfield research project : report on the testing and analysis of an investigation into the comparative efficiency of indexing systems (1962) 0.01
    0.009207167 = product of:
      0.050639413 = sum of:
        0.02111017 = weight(_text_:of in 2741) [ClassicSimilarity], result of:
          0.02111017 = score(doc=2741,freq=4.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.39093933 = fieldWeight in 2741, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.125 = fieldNorm(doc=2741)
        0.029529246 = weight(_text_:on in 2741) [ClassicSimilarity], result of:
          0.029529246 = score(doc=2741,freq=2.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.3888053 = fieldWeight in 2741, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.125 = fieldNorm(doc=2741)
      0.18181819 = coord(2/11)
    
  14. Connell, T.H.: Use of the LCSH system : realities (1996) 0.01
    0.008259994 = product of:
      0.045429964 = sum of:
        0.019591875 = weight(_text_:of in 6941) [ClassicSimilarity], result of:
          0.019591875 = score(doc=6941,freq=18.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.36282203 = fieldWeight in 6941, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=6941)
        0.025838088 = weight(_text_:on in 6941) [ClassicSimilarity], result of:
          0.025838088 = score(doc=6941,freq=8.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.34020463 = fieldWeight in 6941, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=6941)
      0.18181819 = coord(2/11)
    
    Abstract
    Explores the question of whether academic libraries keep up with the changes in the LCSH system. Analysis of the handling of 15 subject headings in 50 academic library catalogues available via the Internet found that libraries are not consistently maintaining subject authority control, or making syndetic references and scope notes in their catalogues. Discusses the results from the perspective of the libraries' performance, performance on the headings overall, performance on references, performance on the type of change made to the headings,a nd performance within 3 widely used onlien catalogue systems (DRA, INNOPAC and NOTIS). Discusses the implications of the findings in relationship to expressions of dissatisfaction with the effectiveness of subject cataloguing expressed by discussion groups on the Internet
  15. Soergel, D.: Indexing and retrieval performance : the logical evidence (1994) 0.01
    0.008259994 = product of:
      0.045429964 = sum of:
        0.019591875 = weight(_text_:of in 579) [ClassicSimilarity], result of:
          0.019591875 = score(doc=579,freq=18.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.36282203 = fieldWeight in 579, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=579)
        0.025838088 = weight(_text_:on in 579) [ClassicSimilarity], result of:
          0.025838088 = score(doc=579,freq=8.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.34020463 = fieldWeight in 579, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=579)
      0.18181819 = coord(2/11)
    
    Abstract
    This article presents a logical analysis of the characteristics of indexing and their effects on retrieval performance.It establishes the ability to ask the questions one needs to ask as the foundation of performance evaluation, and recall and discrimination as the basic quantitative performance measures for binary noninteractive retrieval systems. It then defines the characteristics of indexing that affect retrieval - namely, indexing devices, viewpoint-based and importance-based indexing exhaustivity, indexing specifity, indexing correctness, and indexing consistency - and examines in detail their effects on retrieval. It concludes that retrieval performance depends chiefly on the match between indexing and the requirements of the individual query and on the adaption of the query formulation to the characteristics of the retrieval system, and that the ensuing complexity must be considered in the design and testing of retrieval systems
    Source
    Journal of the American Society for Information Science. 45(1994) no.8, S.589-599
  16. Olson, H.A.; Wolfram, D.: Syntagmatic relationships and indexing consistency on a larger scale (2008) 0.01
    0.0076124608 = product of:
      0.041868534 = sum of:
        0.01745383 = weight(_text_:of in 2214) [ClassicSimilarity], result of:
          0.01745383 = score(doc=2214,freq=28.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.32322758 = fieldWeight in 2214, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2214)
        0.024414703 = weight(_text_:on in 2214) [ClassicSimilarity], result of:
          0.024414703 = score(doc=2214,freq=14.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.3214632 = fieldWeight in 2214, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2214)
      0.18181819 = coord(2/11)
    
    Abstract
    Purpose - The purpose of this article is to examine interindexer consistency on a larger scale than other studies have done to determine if group consensus is reached by larger numbers of indexers and what, if any, relationships emerge between assigned terms. Design/methodology/approach - In total, 64 MLIS students were recruited to assign up to five terms to a document. The authors applied basic data modeling and the exploratory statistical techniques of multi-dimensional scaling (MDS) and hierarchical cluster analysis to determine whether relationships exist in indexing consistency and the coocurrence of assigned terms. Findings - Consistency in the assignment of indexing terms to a document follows an inverse shape, although it is not strictly power law-based unlike many other social phenomena. The exploratory techniques revealed that groups of terms clustered together. The resulting term cooccurrence relationships were largely syntagmatic. Research limitations/implications - The results are based on the indexing of one article by non-expert indexers and are, thus, not generalizable. Based on the study findings, along with the growing popularity of folksonomies and the apparent authority of communally developed information resources, communally developed indexes based on group consensus may have merit. Originality/value - Consistency in the assignment of indexing terms has been studied primarily on a small scale. Few studies have examined indexing on a larger scale with more than a handful of indexers. Recognition of the differences in indexing assignment has implications for the development of public information systems, especially those that do not use a controlled vocabulary and those tagged by end-users. In such cases, multiple access points that accommodate the different ways that users interpret content are needed so that searchers may be guided to relevant content despite using different terminology.
    Source
    Journal of documentation. 64(2008) no.4, S.602-615
  17. Iivonen, M.: ¬The impact of the indexing environment on interindexer consistency (1990) 0.01
    0.007363677 = product of:
      0.040500224 = sum of:
        0.014927144 = weight(_text_:of in 4779) [ClassicSimilarity], result of:
          0.014927144 = score(doc=4779,freq=8.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.27643585 = fieldWeight in 4779, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=4779)
        0.025573079 = weight(_text_:on in 4779) [ClassicSimilarity], result of:
          0.025573079 = score(doc=4779,freq=6.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.33671528 = fieldWeight in 4779, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=4779)
      0.18181819 = coord(2/11)
    
    Abstract
    The interindexer consistency between indexers working in 10 libraries was considered. The indexing environment is described with the help of organisational theory. Interindexer consistency was low, but there were clear differences depending on whether consistency was calculated on the basis of terms or concepts or aspects. Discusses the indexing environment's connections to interindexer consistency
    Source
    Tools for knowledge organization and the human interface. Proceedings of the 1st International ISKO Conference, Darmstadt, 14.-17.8.1990. Pt.1
  18. Iivonen, M.: Interindexer consistency and the indexing environment (1990) 0.01
    0.0073089525 = product of:
      0.04019924 = sum of:
        0.011311376 = weight(_text_:of in 3593) [ClassicSimilarity], result of:
          0.011311376 = score(doc=3593,freq=6.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.20947541 = fieldWeight in 3593, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3593)
        0.028887864 = weight(_text_:on in 3593) [ClassicSimilarity], result of:
          0.028887864 = score(doc=3593,freq=10.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.38036036 = fieldWeight in 3593, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3593)
      0.18181819 = coord(2/11)
    
    Abstract
    Considers the interindexer consistency between indexers working in various organisations and reports on the result of an empirical study. The interindexer consistency was low, but there were clear differences depending on whether the consistency was calculated on the basis to terms or concepts or aspects. The fact that the consistency figures remained low can be explained. The low indexing consistency caused by indexing errors also seems to be difficult to control. Indexing consistency and its control have a clear impact on how feasible and useful centralised services and union catalogues are and can be from the point of view of subject description.
    Source
    International forum on information and documentation. 15(1990) no.2, S.8-15
  19. Rowley, J.: ¬The controlled versus natural indexing languages debate revisited : a perspective on information retrieval practice and research (1994) 0.01
    0.007036477 = product of:
      0.03870062 = sum of:
        0.018066432 = weight(_text_:of in 7151) [ClassicSimilarity], result of:
          0.018066432 = score(doc=7151,freq=30.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.33457235 = fieldWeight in 7151, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=7151)
        0.02063419 = weight(_text_:on in 7151) [ClassicSimilarity], result of:
          0.02063419 = score(doc=7151,freq=10.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.271686 = fieldWeight in 7151, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=7151)
      0.18181819 = coord(2/11)
    
    Abstract
    This article revisits the debate concerning controlled and natural indexing languages, as used in searching the databases of the online hosts, in-house information retrieval systems, online public access catalogues and databases stored on CD-ROM. The debate was first formulated in the early days of information retrieval more than a century ago but, despite significant advance in technology, remains unresolved. The article divides the history of the debate into four eras. Era one was characterised by the introduction of controlled vocabulary. Era two focused on comparisons between different indexing languages in order to assess which was best. Era three saw a number of case studies of limited generalisability and a general recognition that the best search performance can be achieved by the parallel use of the two types of indexing languages. The emphasis in Era four has been on the development of end-user-based systems, including online public access catalogues and databases on CD-ROM. Recent developments in the use of expert systems techniques to support the representation of meaning may lead to systems which offer significant support to the user in end-user searching. In the meantime, however, information retrieval in practice involves a mixture of natural and controlled indexing languages used to search a wide variety of different kinds of databases
    Source
    Journal of information science. 20(1994) no.2, S.108-119
  20. Larson, R.R.: Experiments in automatic Library of Congress Classification (1992) 0.01
    0.007012862 = product of:
      0.03857074 = sum of:
        0.01939093 = weight(_text_:of in 1054) [ClassicSimilarity], result of:
          0.01939093 = score(doc=1054,freq=24.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.3591007 = fieldWeight in 1054, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1054)
        0.01917981 = weight(_text_:on in 1054) [ClassicSimilarity], result of:
          0.01917981 = score(doc=1054,freq=6.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.25253648 = fieldWeight in 1054, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=1054)
      0.18181819 = coord(2/11)
    
    Abstract
    This article presents the results of research into the automatic selection of Library of Congress Classification numbers based on the titles and subject headings in MARC records. The method used in this study was based on partial match retrieval techniques using various elements of new recors (i.e., those to be classified) as "queries", and a test database of classification clusters generated from previously classified MARC records. Sixty individual methods for automatic classification were tested on a set of 283 new records, using all combinations of four different partial match methods, five query types, and three representations of search terms. The results indicate that if the best method for a particular case can be determined, then up to 86% of the new records may be correctly classified. The single method with the best accuracy was able to select the correct classification for about 46% of the new records.
    Source
    Journal of the American Society for Information Science. 43(1992), S.130-148

Authors

Languages

  • e 83
  • chi 1
  • f 1
  • nl 1
  • More… Less…

Types

  • a 81
  • r 3
  • ? 1
  • b 1
  • m 1
  • More… Less…