Search (72 results, page 1 of 4)

  • × type_ss:"x"
  1. Piros, A.: Az ETO-jelzetek automatikus interpretálásának és elemzésének kérdései (2018) 0.05
    0.05485135 = product of:
      0.08227702 = sum of:
        0.06027615 = product of:
          0.18082845 = sum of:
            0.18082845 = weight(_text_:3a in 855) [ClassicSimilarity], result of:
              0.18082845 = score(doc=855,freq=2.0), product of:
                0.38609818 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.045541126 = queryNorm
                0.46834838 = fieldWeight in 855, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=855)
          0.33333334 = coord(1/3)
        0.022000873 = weight(_text_:to in 855) [ClassicSimilarity], result of:
          0.022000873 = score(doc=855,freq=14.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.2657236 = fieldWeight in 855, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0390625 = fieldNorm(doc=855)
      0.6666667 = coord(2/3)
    
    Abstract
    Converting UDC numbers manually to a complex format such as the one mentioned above is an unrealistic expectation; supporting building these representations, as far as possible automatically, is a well-founded requirement. An additional advantage of this approach is that the existing records could also be processed and converted. In my dissertation I would like to prove also that it is possible to design and implement an algorithm that is able to convert pre-coordinated UDC numbers into the introduced format by identifying all their elements and revealing their whole syntactic structure as well. In my dissertation I will discuss a feasible way of building a UDC-specific XML schema for describing the most detailed and complicated UDC numbers (containing not only the common auxiliary signs and numbers, but also the different types of special auxiliaries). The schema definition is available online at: http://piros.udc-interpreter.hu#xsd. The primary goal of my research is to prove that it is possible to support building, retrieving, and analyzing UDC numbers without compromises, by taking the whole syntactic richness of the scheme by storing the UDC numbers reserving the meaning of pre-coordination. The research has also included the implementation of a software that parses UDC classmarks attended to prove that such solution can be applied automatically without any additional effort or even retrospectively on existing collections.
    Content
    Vgl. auch: New automatic interpreter for complex UDC numbers. Unter: <https%3A%2F%2Fudcc.org%2Ffiles%2FAttilaPiros_EC_36-37_2014-2015.pdf&usg=AOvVaw3kc9CwDDCWP7aArpfjrs5b>
  2. Farazi, M.: Faceted lightweight ontologies : a formalization and some experiments (2010) 0.05
    0.0512715 = product of:
      0.07690725 = sum of:
        0.06027615 = product of:
          0.18082845 = sum of:
            0.18082845 = weight(_text_:3a in 4997) [ClassicSimilarity], result of:
              0.18082845 = score(doc=4997,freq=2.0), product of:
                0.38609818 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.045541126 = queryNorm
                0.46834838 = fieldWeight in 4997, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4997)
          0.33333334 = coord(1/3)
        0.016631098 = weight(_text_:to in 4997) [ClassicSimilarity], result of:
          0.016631098 = score(doc=4997,freq=8.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.20086816 = fieldWeight in 4997, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4997)
      0.6666667 = coord(2/3)
    
    Abstract
    While classifications are heavily used to categorize web content, the evolution of the web foresees a more formal structure - ontology - which can serve this purpose. Ontologies are core artifacts of the Semantic Web which enable machines to use inference rules to conduct automated reasoning on data. Lightweight ontologies bridge the gap between classifications and ontologies. A lightweight ontology (LO) is an ontology representing a backbone taxonomy where the concept of the child node is more specific than the concept of the parent node. Formal lightweight ontologies can be generated from their informal ones. The key applications of formal lightweight ontologies are document classification, semantic search, and data integration. However, these applications suffer from the following problems: the disambiguation accuracy of the state of the art NLP tools used in generating formal lightweight ontologies from their informal ones; the lack of background knowledge needed for the formal lightweight ontologies; and the limitation of ontology reuse. In this dissertation, we propose a novel solution to these problems in formal lightweight ontologies; namely, faceted lightweight ontology (FLO). FLO is a lightweight ontology in which terms, present in each node label, and their concepts, are available in the background knowledge (BK), which is organized as a set of facets. A facet can be defined as a distinctive property of the groups of concepts that can help in differentiating one group from another. Background knowledge can be defined as a subset of a knowledge base, such as WordNet, and often represents a specific domain.
    Content
    PhD Dissertation at International Doctorate School in Information and Communication Technology. Vgl.: https%3A%2F%2Fcore.ac.uk%2Fdownload%2Fpdf%2F150083013.pdf&usg=AOvVaw2n-qisNagpyT0lli_6QbAQ.
  3. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.05
    0.04874138 = product of:
      0.07311207 = sum of:
        0.048220925 = product of:
          0.14466277 = sum of:
            0.14466277 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
              0.14466277 = score(doc=701,freq=2.0), product of:
                0.38609818 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.045541126 = queryNorm
                0.3746787 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.33333334 = coord(1/3)
        0.024891147 = weight(_text_:to in 701) [ClassicSimilarity], result of:
          0.024891147 = score(doc=701,freq=28.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.3006319 = fieldWeight in 701, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
      0.6666667 = coord(2/3)
    
    Abstract
    By the explosion of possibilities for a ubiquitous content production, the information overload problem reaches the level of complexity which cannot be managed by traditional modelling approaches anymore. Due to their pure syntactical nature traditional information retrieval approaches did not succeed in treating content itself (i.e. its meaning, and not its representation). This leads to a very low usefulness of the results of a retrieval process for a user's task at hand. In the last ten years ontologies have been emerged from an interesting conceptualisation paradigm to a very promising (semantic) modelling technology, especially in the context of the Semantic Web. From the information retrieval point of view, ontologies enable a machine-understandable form of content description, such that the retrieval process can be driven by the meaning of the content. However, the very ambiguous nature of the retrieval process in which a user, due to the unfamiliarity with the underlying repository and/or query syntax, just approximates his information need in a query, implies a necessity to include the user in the retrieval process more actively in order to close the gap between the meaning of the content and the meaning of a user's query (i.e. his information need). This thesis lays foundation for such an ontology-based interactive retrieval process, in which the retrieval system interacts with a user in order to conceptually interpret the meaning of his query, whereas the underlying domain ontology drives the conceptualisation process. In that way the retrieval process evolves from a query evaluation process into a highly interactive cooperation between a user and the retrieval system, in which the system tries to anticipate the user's information need and to deliver the relevant content proactively. Moreover, the notion of content relevance for a user's query evolves from a content dependent artefact to the multidimensional context-dependent structure, strongly influenced by the user's preferences. This cooperation process is realized as the so-called Librarian Agent Query Refinement Process. In order to clarify the impact of an ontology on the retrieval process (regarding its complexity and quality), a set of methods and tools for different levels of content and query formalisation is developed, ranging from pure ontology-based inferencing to keyword-based querying in which semantics automatically emerges from the results. Our evaluation studies have shown that the possibilities to conceptualize a user's information need in the right manner and to interpret the retrieval results accordingly are key issues for realizing much more meaningful information retrieval systems.
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
  4. Verwer, K.: Freiheit und Verantwortung bei Hans Jonas (2011) 0.05
    0.048220925 = product of:
      0.14466277 = sum of:
        0.14466277 = product of:
          0.43398827 = sum of:
            0.43398827 = weight(_text_:3a in 973) [ClassicSimilarity], result of:
              0.43398827 = score(doc=973,freq=2.0), product of:
                0.38609818 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.045541126 = queryNorm
                1.1240361 = fieldWeight in 973, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.09375 = fieldNorm(doc=973)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Content
    Vgl.: http%3A%2F%2Fcreativechoice.org%2Fdoc%2FHansJonas.pdf&usg=AOvVaw1TM3teaYKgABL5H9yoIifA&opi=89978449.
  5. Xiong, C.: Knowledge based text representations for information retrieval (2016) 0.05
    0.046171855 = product of:
      0.06925778 = sum of:
        0.048220925 = product of:
          0.14466277 = sum of:
            0.14466277 = weight(_text_:3a in 5820) [ClassicSimilarity], result of:
              0.14466277 = score(doc=5820,freq=2.0), product of:
                0.38609818 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.045541126 = queryNorm
                0.3746787 = fieldWeight in 5820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5820)
          0.33333334 = coord(1/3)
        0.02103686 = weight(_text_:to in 5820) [ClassicSimilarity], result of:
          0.02103686 = score(doc=5820,freq=20.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.25408036 = fieldWeight in 5820, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
      0.6666667 = coord(2/3)
    
    Abstract
    The successes of information retrieval (IR) in recent decades were built upon bag-of-words representations. Effective as it is, bag-of-words is only a shallow text understanding; there is a limited amount of information for document ranking in the word space. This dissertation goes beyond words and builds knowledge based text representations, which embed the external and carefully curated information from knowledge bases, and provide richer and structured evidence for more advanced information retrieval systems. This thesis research first builds query representations with entities associated with the query. Entities' descriptions are used by query expansion techniques that enrich the query with explanation terms. Then we present a general framework that represents a query with entities that appear in the query, are retrieved by the query, or frequently show up in the top retrieved documents. A latent space model is developed to jointly learn the connections from query to entities and the ranking of documents, modeling the external evidence from knowledge bases and internal ranking features cooperatively. To further improve the quality of relevant entities, a defining factor of our query representations, we introduce learning to rank to entity search and retrieve better entities from knowledge bases. In the document representation part, this thesis research also moves one step forward with a bag-of-entities model, in which documents are represented by their automatic entity annotations, and the ranking is performed in the entity space.
    This proposal includes plans to improve the quality of relevant entities with a co-learning framework that learns from both entity labels and document labels. We also plan to develop a hybrid ranking system that combines word based and entity based representations together with their uncertainties considered. At last, we plan to enrich the text representations with connections between entities. We propose several ways to infer entity graph representations for texts, and to rank documents using their structure representations. This dissertation overcomes the limitation of word based representations with external and carefully curated information from knowledge bases. We believe this thesis research is a solid start towards the new generation of intelligent, semantic, and structured information retrieval.
    Content
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Language and Information Technologies. Vgl.: https%3A%2F%2Fwww.cs.cmu.edu%2F~cx%2Fpapers%2Fknowledge_based_text_representation.pdf&usg=AOvVaw0SaTSvhWLTh__Uz_HtOtl3.
  6. Gordon, T.J.; Helmer-Hirschberg, O.: Report on a long-range forecasting study (1964) 0.03
    0.03213918 = product of:
      0.048208766 = sum of:
        0.013304878 = weight(_text_:to in 4204) [ClassicSimilarity], result of:
          0.013304878 = score(doc=4204,freq=2.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.16069452 = fieldWeight in 4204, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0625 = fieldNorm(doc=4204)
        0.034903888 = product of:
          0.069807775 = sum of:
            0.069807775 = weight(_text_:22 in 4204) [ClassicSimilarity], result of:
              0.069807775 = score(doc=4204,freq=4.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.4377287 = fieldWeight in 4204, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4204)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Description of an experimental trend-predicting exercise covering a time period as far as 50 years into the future. The Delphi technique is used in soliciting the opinions of experts in six areas: scientific breakthroughs, population growth, automation, space progress, probability and prevention of war, and future weapon systems. Possible objections to the approach are also discussed.
    Date
    22. 6.2018 13:24:08
    22. 6.2018 13:54:52
  7. Huo, W.: Automatic multi-word term extraction and its application to Web-page summarization (2012) 0.03
    0.027215695 = product of:
      0.04082354 = sum of:
        0.02231296 = weight(_text_:to in 563) [ClassicSimilarity], result of:
          0.02231296 = score(doc=563,freq=10.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.26949292 = fieldWeight in 563, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.046875 = fieldNorm(doc=563)
        0.018510582 = product of:
          0.037021164 = sum of:
            0.037021164 = weight(_text_:22 in 563) [ClassicSimilarity], result of:
              0.037021164 = score(doc=563,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.23214069 = fieldWeight in 563, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=563)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    In this thesis we propose three new word association measures for multi-word term extraction. We combine these association measures with LocalMaxs algorithm in our extraction model and compare the results of different multi-word term extraction methods. Our approach is language and domain independent and requires no training data. It can be applied to such tasks as text summarization, information retrieval, and document classification. We further explore the potential of using multi-word terms as an effective representation for general web-page summarization. We extract multi-word terms from human written summaries in a large collection of web-pages, and generate the summaries by aligning document words with these multi-word terms. Our system applies machine translation technology to learn the aligning process from a training set and focuses on selecting high quality multi-word terms from human written summaries to generate suitable results for web-page summarization.
    Content
    A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Computer Science. Vgl. Unter: http://www.inf.ufrgs.br%2F~ceramisch%2Fdownload_files%2Fpublications%2F2009%2Fp01.pdf.
    Date
    10. 1.2013 19:22:47
  8. Makewita, S.M.: Investigating the generic information-seeking function of organisational decision-makers : perspectives on improving organisational information systems (2002) 0.03
    0.026914757 = product of:
      0.040372133 = sum of:
        0.024946647 = weight(_text_:to in 642) [ClassicSimilarity], result of:
          0.024946647 = score(doc=642,freq=18.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.30130222 = fieldWeight in 642, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0390625 = fieldNorm(doc=642)
        0.015425485 = product of:
          0.03085097 = sum of:
            0.03085097 = weight(_text_:22 in 642) [ClassicSimilarity], result of:
              0.03085097 = score(doc=642,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.19345059 = fieldWeight in 642, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=642)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The past decade has seen the emergence of a new paradigm in the corporate world where organisations emphasised connectivity as a means of exposing decision-makers to wider resources of information within and outside the organisation. Many organisations followed the initiatives of enhancing infrastructures, manipulating cultural shifts and emphasising managerial commitment for creating pools and networks of knowledge. However, the concept of connectivity is not merely presenting people with the data, but more importantly, to create environments where people can seek information efficiently. This paradigm has therefore caused a shift in the function of information systems in organisations. They have to be now assessed in relation to how they underpin people's information-seeking activities within the context of their organisational environment. This research project used interpretative research methods to investigate the nature of people's information-seeking activities at two culturally contrasting organisations. Outcomes of this research project provide insights into phenomena associated with people's information-seeking function, and show how they depend on the organisational context that is defined partly by information systems. It suggests that information-seeking is not just searching for data. The inefficiencies inherent in both people and their environments can bring opaqueness into people's data, which they need to avoid or eliminate as part of seeking information. This seems to have made information-seeking a two-tier process consisting of a primary process of searching and interpreting data and auxiliary process of avoiding and eliminating opaqueness in data. Based on this view, this research suggests that organisational information systems operate naturally as implicit dual-mechanisms to underpin the above two-tier process, and that improvements to information systems should concern maintaining the balance in these dual-mechanisms.
    Date
    22. 7.2022 12:16:58
  9. Kiren, T.: ¬A clustering based indexing technique of modularized ontologies for information retrieval (2017) 0.03
    0.025403451 = product of:
      0.038105175 = sum of:
        0.025764786 = weight(_text_:to in 4399) [ClassicSimilarity], result of:
          0.025764786 = score(doc=4399,freq=30.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.3111836 = fieldWeight in 4399, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.03125 = fieldNorm(doc=4399)
        0.012340387 = product of:
          0.024680775 = sum of:
            0.024680775 = weight(_text_:22 in 4399) [ClassicSimilarity], result of:
              0.024680775 = score(doc=4399,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.15476047 = fieldWeight in 4399, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4399)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Indexing plays a vital role in Information Retrieval. With the availability of huge volume of information, it has become necessary to index the information in such a way to make easier for the end users to find the information they want efficiently and accurately. Keyword-based indexing uses words as indexing terms. It is not capable of capturing the implicit relation among terms or the semantics of the words in the document. To eliminate this limitation, ontology-based indexing came into existence, which allows semantic based indexing to solve complex and indirect user queries. Ontologies are used for document indexing which allows semantic based information retrieval. Existing ontologies or the ones constructed from scratch are used presently for indexing. Constructing ontologies from scratch is a labor-intensive task and requires extensive domain knowledge whereas use of an existing ontology may leave some important concepts in documents un-annotated. Using multiple ontologies can overcome the problem of missing out concepts to a great extent, but it is difficult to manage (changes in ontologies over time by their developers) multiple ontologies and ontology heterogeneity also arises due to ontologies constructed by different ontology developers. One possible solution to managing multiple ontologies and build from scratch is to use modular ontologies for indexing.
    Modular ontologies are built in modular manner by combining modules from multiple relevant ontologies. Ontology heterogeneity also arises during modular ontology construction because multiple ontologies are being dealt with, during this process. Ontologies need to be aligned before using them for modular ontology construction. The existing approaches for ontology alignment compare all the concepts of each ontology to be aligned, hence not optimized in terms of time and search space utilization. A new indexing technique is proposed based on modular ontology. An efficient ontology alignment technique is proposed to solve the heterogeneity problem during the construction of modular ontology. Results are satisfactory as Precision and Recall are improved by (8%) and (10%) respectively. The value of Pearsons Correlation Coefficient for degree of similarity, time, search space requirement, precision and recall are close to 1 which shows that the results are significant. Further research can be carried out for using modular ontology based indexing technique for Multimedia Information Retrieval and Bio-Medical information retrieval.
    Content
    Submitted to the Faculty of the Computer Science and Engineering Department of the University of Engineering and Technology Lahore in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Computer Science (2009 - 009-PhD-CS-04). Vgl.: http://prr.hec.gov.pk/jspui/bitstream/123456789/8375/1/Taybah_Kiren_Computer_Science_HSR_2017_UET_Lahore_14.12.2017.pdf.
    Date
    20. 1.2015 18:30:22
  10. Shala, E.: ¬Die Autonomie des Menschen und der Maschine : gegenwärtige Definitionen von Autonomie zwischen philosophischem Hintergrund und technologischer Umsetzbarkeit (2014) 0.02
    0.020092051 = product of:
      0.06027615 = sum of:
        0.06027615 = product of:
          0.18082845 = sum of:
            0.18082845 = weight(_text_:3a in 4388) [ClassicSimilarity], result of:
              0.18082845 = score(doc=4388,freq=2.0), product of:
                0.38609818 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.045541126 = queryNorm
                0.46834838 = fieldWeight in 4388, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4388)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Footnote
    Vgl. unter: https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKEwizweHljdbcAhVS16QKHXcFD9QQFjABegQICRAB&url=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F271200105_Die_Autonomie_des_Menschen_und_der_Maschine_-_gegenwartige_Definitionen_von_Autonomie_zwischen_philosophischem_Hintergrund_und_technologischer_Umsetzbarkeit_Redigierte_Version_der_Magisterarbeit_Karls&usg=AOvVaw06orrdJmFF2xbCCp_hL26q.
  11. Gabler, S.: Vergabe von DDC-Sachgruppen mittels eines Schlagwort-Thesaurus (2021) 0.02
    0.020092051 = product of:
      0.06027615 = sum of:
        0.06027615 = product of:
          0.18082845 = sum of:
            0.18082845 = weight(_text_:3a in 1000) [ClassicSimilarity], result of:
              0.18082845 = score(doc=1000,freq=2.0), product of:
                0.38609818 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.045541126 = queryNorm
                0.46834838 = fieldWeight in 1000, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1000)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Content
    Master thesis Master of Science (Library and Information Studies) (MSc), Universität Wien. Advisor: Christoph Steiner. Vgl.: https://www.researchgate.net/publication/371680244_Vergabe_von_DDC-Sachgruppen_mittels_eines_Schlagwort-Thesaurus. DOI: 10.25365/thesis.70030. Vgl. dazu die Präsentation unter: https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=web&cd=&ved=0CAIQw7AJahcKEwjwoZzzytz_AhUAAAAAHQAAAAAQAg&url=https%3A%2F%2Fwiki.dnb.de%2Fdownload%2Fattachments%2F252121510%2FDA3%2520Workshop-Gabler.pdf%3Fversion%3D1%26modificationDate%3D1671093170000%26api%3Dv2&psig=AOvVaw0szwENK1or3HevgvIDOfjx&ust=1687719410889597&opi=89978449.
  12. Stünkel, M.: Neuere Methoden der inhaltlichen Erschließung schöner Literatur in öffentlichen Bibliotheken (1986) 0.02
    0.016453851 = product of:
      0.04936155 = sum of:
        0.04936155 = product of:
          0.0987231 = sum of:
            0.0987231 = weight(_text_:22 in 5815) [ClassicSimilarity], result of:
              0.0987231 = score(doc=5815,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.61904186 = fieldWeight in 5815, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=5815)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    4. 8.2006 21:35:22
  13. Menges, T.: Möglichkeiten und Grenzen der Übertragbarkeit eines Buches auf Hypertext am Beispiel einer französischen Grundgrammatik (Klein; Kleineidam) (1997) 0.01
    0.014397118 = product of:
      0.043191355 = sum of:
        0.043191355 = product of:
          0.08638271 = sum of:
            0.08638271 = weight(_text_:22 in 1496) [ClassicSimilarity], result of:
              0.08638271 = score(doc=1496,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.5416616 = fieldWeight in 1496, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=1496)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 7.1998 18:23:25
  14. Schneider, A.: ¬Die Verzeichnung und sachliche Erschließung der Belletristik in Kaysers Bücherlexikon und im Schlagwortkatalog Georg/Ost (1980) 0.01
    0.014397118 = product of:
      0.043191355 = sum of:
        0.043191355 = product of:
          0.08638271 = sum of:
            0.08638271 = weight(_text_:22 in 5309) [ClassicSimilarity], result of:
              0.08638271 = score(doc=5309,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.5416616 = fieldWeight in 5309, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=5309)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    5. 8.2006 13:07:22
  15. Sperling, R.: Anlage von Literaturreferenzen für Onlineressourcen auf einer virtuellen Lernplattform (2004) 0.01
    0.014397118 = product of:
      0.043191355 = sum of:
        0.043191355 = product of:
          0.08638271 = sum of:
            0.08638271 = weight(_text_:22 in 4635) [ClassicSimilarity], result of:
              0.08638271 = score(doc=4635,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.5416616 = fieldWeight in 4635, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4635)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    26.11.2005 18:39:22
  16. Stanz, G.: Medienarchive: Analyse einer unterschätzten Ressource : Archivierung, Dokumentation, und Informationsvermittlung in Medien bei besonderer Berücksichtigung von Pressearchiven (1994) 0.01
    0.012340388 = product of:
      0.037021164 = sum of:
        0.037021164 = product of:
          0.07404233 = sum of:
            0.07404233 = weight(_text_:22 in 9) [ClassicSimilarity], result of:
              0.07404233 = score(doc=9,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.46428138 = fieldWeight in 9, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=9)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 2.1997 19:50:29
  17. Hartwieg, U.: ¬Die nationalbibliographische Situation im 18. Jahrhundert : Vorüberlegungen zur Verzeichnung der deutschen Drucke in einem VD18 (1999) 0.01
    0.012340388 = product of:
      0.037021164 = sum of:
        0.037021164 = product of:
          0.07404233 = sum of:
            0.07404233 = weight(_text_:22 in 3813) [ClassicSimilarity], result of:
              0.07404233 = score(doc=3813,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.46428138 = fieldWeight in 3813, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3813)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    18. 6.1999 9:22:36
  18. Milanesi, C.: Möglichkeiten der Kooperation im Rahmen von Subject Gateways : das Euler-Projekt im Vergleich mit weiteren europäischen Projekten (2001) 0.01
    0.012340388 = product of:
      0.037021164 = sum of:
        0.037021164 = product of:
          0.07404233 = sum of:
            0.07404233 = weight(_text_:22 in 4865) [ClassicSimilarity], result of:
              0.07404233 = score(doc=4865,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.46428138 = fieldWeight in 4865, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4865)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 6.2002 19:41:59
  19. Haller, S.H.M.: Mappingverfahren zur Wissensorganisation (2002) 0.01
    0.010283656 = product of:
      0.03085097 = sum of:
        0.03085097 = product of:
          0.06170194 = sum of:
            0.06170194 = weight(_text_:22 in 3406) [ClassicSimilarity], result of:
              0.06170194 = score(doc=3406,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.38690117 = fieldWeight in 3406, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3406)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    30. 5.2010 16:22:35
  20. Vocht, L. De: Exploring semantic relationships in the Web of Data : Semantische relaties verkennen in data op het web (2017) 0.01
    0.009088117 = product of:
      0.02726435 = sum of:
        0.02726435 = weight(_text_:to in 4232) [ClassicSimilarity], result of:
          0.02726435 = score(doc=4232,freq=86.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.32929513 = fieldWeight in 4232, product of:
              9.273619 = tf(freq=86.0), with freq of:
                86.0 = termFreq=86.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.01953125 = fieldNorm(doc=4232)
      0.33333334 = coord(1/3)
    
    Abstract
    After the launch of the World Wide Web, it became clear that searching documentson the Web would not be trivial. Well-known engines to search the web, like Google, focus on search in web documents using keywords. The documents are structured and indexed to ensure keywords match documents as accurately as possible. However, searching by keywords does not always suice. It is oen the case that users do not know exactly how to formulate the search query or which keywords guarantee retrieving the most relevant documents. Besides that, it occurs that users rather want to browse information than looking up something specific. It turned out that there is need for systems that enable more interactivity and facilitate the gradual refinement of search queries to explore the Web. Users expect more from the Web because the short keyword-based queries they pose during search, do not suffice for all cases. On top of that, the Web is changing structurally. The Web comprises, apart from a collection of documents, more and more linked data, pieces of information structured so they can be processed by machines. The consequently applied semantics allow users to exactly indicate machines their search intentions. This is made possible by describing data following controlled vocabularies, concept lists composed by experts, published uniquely identifiable on the Web. Even so, it is still not trivial to explore data on the Web. There is a large variety of vocabularies and various data sources use different terms to identify the same concepts.
    This PhD-thesis describes how to effectively explore linked data on the Web. The main focus is on scenarios where users want to discover relationships between resources rather than finding out more about something specific. Searching for a specific document or piece of information fits in the theoretical framework of information retrieval and is associated with exploratory search. Exploratory search goes beyond 'looking up something' when users are seeking more detailed understanding, further investigation or navigation of the initial search results. The ideas behind exploratory search and querying linked data merge when it comes to the way knowledge is represented and indexed by machines - how data is structured and stored for optimal searchability. Queries and information should be aligned to facilitate that searches also reveal connections between results. This implies that they take into account the same semantic entities, relevant at that moment. To realize this, we research three techniques that are evaluated one by one in an experimental set-up to assess how well they succeed in their goals. In the end, the techniques are applied to a practical use case that focuses on forming a bridge between the Web and the use of digital libraries in scientific research. Our first technique focuses on the interactive visualization of search results. Linked data resources can be brought in relation with each other at will. This leads to complex and diverse graphs structures. Our technique facilitates navigation and supports a workflow starting from a broad overview on the data and allows narrowing down until the desired level of detail to then broaden again. To validate the flow, two visualizations where implemented and presented to test-users. The users judged the usability of the visualizations, how the visualizations fit in the workflow and to which degree their features seemed useful for the exploration of linked data.
    The ideas behind exploratory search and querying linked data merge when it comes to the way knowledge is represented and indexed by machines - how data is structured and stored for optimal searchability. eries and information should be aligned to facilitate that searches also reveal connections between results. This implies that they take into account the same semantic entities, relevant at that moment. To realize this, we research three techniques that are evaluated one by one in an experimental set-up to assess how well they succeed in their goals. In the end, the techniques are applied to a practical use case that focuses on forming a bridge between the Web and the use of digital libraries in scientific research.
    Our first technique focuses on the interactive visualization of search results. Linked data resources can be brought in relation with each other at will. This leads to complex and diverse graphs structures. Our technique facilitates navigation and supports a workflow starting from a broad overview on the data and allows narrowing down until the desired level of detail to then broaden again. To validate the flow, two visualizations where implemented and presented to test-users. The users judged the usability of the visualizations, how the visualizations fit in the workflow and to which degree their features seemed useful for the exploration of linked data. There is a difference in the way users interact with resources, visually or textually, and how resources are represented for machines to be processed by algorithms. This difference complicates bridging the users' intents and machine executable queries. It is important to implement this 'translation' mechanism to impact the search as favorable as possible in terms of performance, complexity and accuracy. To do this, we explain a second technique, that supports such a bridging component. Our second technique is developed around three features that support the search process: looking up, relating and ranking resources. The main goal is to ensure that resources in the results are as precise and relevant as possible. During the evaluation of this technique, we did not only look at the precision of the search results but also investigated how the effectiveness of the search evolved while the user executed certain actions sequentially.
    When we speak about finding relationships between resources, it is necessary to dive deeper in the structure. The graph structure of linked data where the semantics give meaning to the relationships between resources enable the execution of pathfinding algorithms. The assigned weights and heuristics are base components of such algorithms and ultimately define (the order) which resources are included in a path. These paths explain indirect connections between resources. Our third technique proposes an algorithm that optimizes the choice of resources in terms of serendipity. Some optimizations guard the consistence of candidate-paths where the coherence of consecutive connections is maximized to avoid trivial and too arbitrary paths. The implementation uses the A* algorithm, the de-facto reference when it comes to heuristically optimized minimal cost paths. The effectiveness of paths was measured based on common automatic metrics and surveys where the users could indicate their preference for paths, generated each time in a different way. Finally, all our techniques are applied to a use case about publications in digital libraries where they are aligned with information about scientific conferences and researchers. The application to this use case is a practical example because the different aspects of exploratory search come together. In fact, the techniques also evolved from the experiences when implementing the use case. Practical details about the semantic model are explained and the implementation of the search system is clarified module by module. The evaluation positions the result, a prototype of a tool to explore scientific publications, researchers and conferences next to some important alternatives.

Languages

  • e 37
  • d 30
  • f 2
  • hu 1
  • pt 1
  • More… Less…

Types