Search (43 results, page 1 of 3)

  • × author_ss:"Hjoerland, B."
  1. Hjoerland, B.: ¬The controversy over the concept of information : a rejoinder to Professor Bates (2009) 0.04
    0.044842064 = product of:
      0.05978942 = sum of:
        0.0029427784 = product of:
          0.011771114 = sum of:
            0.011771114 = weight(_text_:based in 2748) [ClassicSimilarity], result of:
              0.011771114 = score(doc=2748,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.083222985 = fieldWeight in 2748, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=2748)
          0.25 = coord(1/4)
        0.048896383 = weight(_text_:term in 2748) [ClassicSimilarity], result of:
          0.048896383 = score(doc=2748,freq=6.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.22323033 = fieldWeight in 2748, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.01953125 = fieldNorm(doc=2748)
        0.007950256 = product of:
          0.015900511 = sum of:
            0.015900511 = weight(_text_:22 in 2748) [ClassicSimilarity], result of:
              0.015900511 = score(doc=2748,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.09672529 = fieldWeight in 2748, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=2748)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Content
    "This letter considers some main arguments in Professor Bates' article (2008), which is part of our former debate (Bates, 2005,2006; Hjoerland, 2007). Bates (2008) does not write much to restate or enlarge on her theoretical position but is mostly arguing about what she claims Hjorland (2007) ignored or misinterpreted in her two articles. Bates (2008, p. 842) wrote that my arguments did not reflect "a standard of coherence, consistency, and logic that is expected of an argument presented in a scientific journal." My argumentation below will refute this statement. This controversy is whether information should be understood as a subjective phenomenon (alone), as an objective phenomenon (alone), or as a combined objective and a subjective phenomenon ("having it both ways"). Bates (2006) defined "information" (sometimes, e.g., termed "information 1," p. 1042) as an objective phenomenon and "information 2" as a subjective phenomenon. However, sometimes the term "information" is also used as a synonym for "information 2," e.g., "the term information is understood to refer to one or both senses" (p. 1042). Thus, Professor Bates is not consistent in using the terminology that she herself introduces, and confusion in this controversy may be caused by Professor Bates' ambiguity in her use of the term "information." Bates (2006, p. 1033) defined information as an objective phenomenon by joining a definition by Edwin Parker: "Information is the pattern of organization of matter and energy." The argument in Hjoerland (2007) is, by contrast, that information should be understood as a subjective phenomenon all the way down: That neither the objective definition of information nor "having it both ways" is fruitful. This is expressed, for example, by joining Karpatschof's (2000) definition of information as a physical signal relative to a certain release mechanism, which implies that information is not something objective that can be understood independently of an observer or independently of other kinds of mechanism that are programmed to be sensitive to specific attributes of a signal: There are many differences in the world, and each of them is potentially informative in given situations. Regarding Parker's definition, "patterns of organization of matter and energy" are no more than that until they inform somebody about something. When they inform somebody about something, they may be considered information. The following quote is part of the argumentation in Bates (2008): "He contrasts my definition of information as 'observer-independent' with his position that information is 'situational' and adds a list of respected names on the situational side (Hjoerland, 2007, p. 1448). What this sentence, and much of the remainder of his argument, ignores is the fact that my approach accounts for both an observer-independent and a contextual, situational sense of information." Yes, it is correct that I mostly concentrated on refuting Bates' objective definition of information. It is as if Bates expects an overall appraisal of her work rather than providing a specific analysis of the points on which there are disagreements. I see Bates' "having it both ways": a symptom of inconsistence in argumentation.
    Bates (2008, p. 843) further writes about her definition of information: "This is the objectivist foundation, the rock bottom minimum of the meaning of information; it informs both articles throughout." This is exactly the focus of my disagreement. If we take a word in a language, it is understood as both being a "pattern of organization of matter and energy" (e.g., a sound) and carrying meaning. But the relation between the physical sign and its meaning is considered an arbitrary relation in linguistics. Any physical material has the potential of carrying any meaning and to inform somebody. The physical stuff in itself is not information until it is used as a sign. An important issue in this debate is whether Bates' examples demonstrate the usefulness of her own position as opposed to mine. Her example about information seeking concerning navigation and how "the very layout of the ship and the design of the bridge promoted the smooth flow of information from the exterior of the ship to the crew and among the crewmembers" (Bates, 2006, pp. 1042-1043) does not justify Bates' definition of information as an objective phenomenon. The design is made for a purpose, and this purpose determines how information should be defined in this context. Bates' view on "curatorial sciences" (2006, p. 1043) is close to Hjorland's suggestions (2000) about "memory institutions," which is based on the subjective understanding of information. However, she does not relate to this proposal, and she does not argue how the objective understanding of information is related to this example. I therefore conclude that Bates' practical examples do not support her objective definition of information, nor do they support her "having it both ways." Finally, I exemplify the consequences of my understanding of information by showing how an archaeologist and a geologist might represent the same stone differently in information systems. Bates (2008, p. 843) writes about this example: "This position is completely consistent with mine." However, this "consistency" was not recognized by Bates until I published my objections and, therefore, this is an indication that my criticism was needed. I certainly share Professor Bates (2008) advice to read her original articles: They contain much important stuff. I just recommend that the reader ignore the parts that argue about information being an objective phenomenon."
    Date
    22. 3.2009 18:13:27
  2. Lardera, M.; Hjoerland, B.: Keyword (2021) 0.04
    0.037407737 = product of:
      0.074815474 = sum of:
        0.0070626684 = product of:
          0.028250674 = sum of:
            0.028250674 = weight(_text_:based in 591) [ClassicSimilarity], result of:
              0.028250674 = score(doc=591,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.19973516 = fieldWeight in 591, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.046875 = fieldNorm(doc=591)
          0.25 = coord(1/4)
        0.06775281 = weight(_text_:term in 591) [ClassicSimilarity], result of:
          0.06775281 = score(doc=591,freq=2.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.309317 = fieldWeight in 591, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.046875 = fieldNorm(doc=591)
      0.5 = coord(2/4)
    
    Abstract
    This article discusses the different meanings of 'keyword' and related terms such as 'keyphrase', 'descriptor', 'index term', 'subject heading', 'tag' and 'n-gram' and suggests definitions of each of these terms. It further illustrates a classification of keywords, based on how they are produced or who is the actor generating them and present comparison between author-assigned keywords, indexer-assigned keywords and reader-assigned keywords as well as the automatic generation of keywords. The article also considers the functions of keywords including the use of keywords for generating bibliographic indexes. The theoretical view informing the article is that the assignment of a keyword to a text, picture or other document involves an interpretation of the document and an evaluation of the document's potentials for users. This perspective is important for both manually assigned keywords and for automated generation and is opposed to a strong tendency to consider a set of keywords as ideally presenting one best representation of a document for all requests.
  3. Hjoerland, B.: Evidence-based practice : an analysis based on the philosophy of science (2011) 0.04
    0.035438642 = product of:
      0.070877284 = sum of:
        0.014416611 = product of:
          0.057666443 = sum of:
            0.057666443 = weight(_text_:based in 4476) [ClassicSimilarity], result of:
              0.057666443 = score(doc=4476,freq=12.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.4077077 = fieldWeight in 4476, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4476)
          0.25 = coord(1/4)
        0.056460675 = weight(_text_:term in 4476) [ClassicSimilarity], result of:
          0.056460675 = score(doc=4476,freq=2.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.25776416 = fieldWeight in 4476, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4476)
      0.5 = coord(2/4)
    
    Abstract
    Evidence-based practice (EBP) is an influential interdisciplinary movement that originated in medicine as evidence-based medicine (EBM) about 1992. EBP is of considerable interest to library and information science (LIS) because it focuses on a thorough documentation of the basis for the decision making that is established in research as well as an optimization of every link in documentation and search processes. EBP is based on the philosophical doctrine of empiricism and, therefore, it is subject to the criticism that has been raised against empiricism. The main criticism of EBP is that practitioners lose their autonomy, that the understanding of theory and of underlying mechanisms is weakened, and that the concept of evidence is too narrow in the empiricist tradition. In this article, it is suggested that we should speak of "research-based practice" rather than EBP, because this term is open to more fruitful epistemologies and provides a broader understanding of evidence. The focus on scientific argumentation in EBP is an important contribution from EBP to LIS, which is long overdue, but parts of the underlying epistemological assumptions should be replaced: EBP is too narrow, too formalist, and too mechanical an approach on which to base scientific and scholarly documentation.
  4. Hjoerland, B.: Information (2023) 0.03
    0.034227468 = product of:
      0.13690987 = sum of:
        0.13690987 = weight(_text_:term in 1118) [ClassicSimilarity], result of:
          0.13690987 = score(doc=1118,freq=6.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.62504494 = fieldWeight in 1118, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1118)
      0.25 = coord(1/4)
    
    Abstract
    This article presents a brief history of the term "information" and its different meanings, which are both important and difficult because the different meanings of the term imply whole theories of knowledge. The article further considers the relation between "information" and the concepts "matter and energy", "data", "sign and meaning", "knowledge" and "communication". It presents and analyses the influence of information in information studies and knowledge organization and contains a presentation and critical analysis of some compound terms such as "information need", "information overload" and "information retrieval", which illuminate the use of the term information in information studies. An appendix provides a chronological list of definitions of information.
  5. Hjoerland, B.: Science, Part I : basic conceptions of science and the scientific method (2021) 0.03
    0.03332738 = product of:
      0.06665476 = sum of:
        0.010194084 = product of:
          0.040776335 = sum of:
            0.040776335 = weight(_text_:based in 594) [ClassicSimilarity], result of:
              0.040776335 = score(doc=594,freq=6.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.28829288 = fieldWeight in 594, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=594)
          0.25 = coord(1/4)
        0.056460675 = weight(_text_:term in 594) [ClassicSimilarity], result of:
          0.056460675 = score(doc=594,freq=2.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.25776416 = fieldWeight in 594, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.0390625 = fieldNorm(doc=594)
      0.5 = coord(2/4)
    
    Abstract
    This article is the first in a trilogy about the concept "science". Section 1 considers the historical development of the meaning of the term science and shows its close relation to the terms "knowl­edge" and "philosophy". Section 2 presents four historic phases in the basic conceptualizations of science (1) science as representing absolute certain of knowl­edge based on deductive proof; (2) science as representing absolute certain of knowl­edge based on "the scientific method"; (3) science as representing fallible knowl­edge based on "the scientific method"; (4) science without a belief in "the scientific method" as constitutive, hence the question about the nature of science becomes dramatic. Section 3 presents four basic understandings of the scientific method: Rationalism, which gives priority to a priori thinking; empiricism, which gives priority to the collection, description, and processing of data in a neutral way; historicism, which gives priority to the interpretation of data in the light of "paradigm" and pragmatism, which emphasizes the analysis of the purposes, consequences, and the interests of knowl­edge. The second article in the trilogy focus on different fields studying science, while the final article presets further developments in the concept of science and the general conclusion. Overall, the trilogy illuminates the most important tensions in different conceptualizations of science and argues for the role of information science and knowl­edge organization in the study of science and suggests how "science" should be understood as an object of research in these fields.
  6. Hjoerland, B.: Arguments for 'the bibliographical paradigm' : some thoughts inspired by the new English edition of the UDC (2007) 0.02
    0.023954237 = product of:
      0.09581695 = sum of:
        0.09581695 = weight(_text_:term in 552) [ClassicSimilarity], result of:
          0.09581695 = score(doc=552,freq=4.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.4374403 = fieldWeight in 552, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.046875 = fieldNorm(doc=552)
      0.25 = coord(1/4)
    
    Abstract
    The term 'the bibliographic paradigm' is used in the literature of library and information science, but is a very seldom term and is almost always negatively described. This paper reconsiders this concept. Method. The method is mainly 'analytical'. Empirical data concerning the current state of the UDC-classification system are also presented in order to illuminate the connection between theory and practice. Analysis. The bibliographic paradigm is understood as a perspective in library and information science focusing on documents and information resources, their description, organization, mediation and use. This perspective is examined as one among other metatheories of library and information science and its philosophical assumptions and implications are outlined. Results. The neglect and misunderstanding of 'the bibliographic paradigm' as well as the quality of the new UDC-classification indicate that both the metatheoretical discourses on library and information science and its concrete practice seem to be in a state of crisis.
  7. Hjoerland, B.: Classification (2017) 0.02
    0.02258427 = product of:
      0.09033708 = sum of:
        0.09033708 = weight(_text_:term in 3610) [ClassicSimilarity], result of:
          0.09033708 = score(doc=3610,freq=2.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.41242266 = fieldWeight in 3610, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.0625 = fieldNorm(doc=3610)
      0.25 = coord(1/4)
    
    Abstract
    This article presents and discusses definitions of the term "classification" and the related concepts "Concept/conceptualization," "categorization," "ordering," "taxonomy" and "typology." It further presents and discusses theories of classification including the influences of Aristotle and Wittgenstein. It presents different views on forming classes, including logical division, numerical taxonomy, historical classification, hermeneutical and pragmatic/critical views. Finally, issues related to artificial versus natural classification and taxonomic monism versus taxonomic pluralism are briefly presented and discussed.
  8. Hjoerland, B.: Documents, memory institutions and information science (2000) 0.02
    0.019761236 = product of:
      0.079044946 = sum of:
        0.079044946 = weight(_text_:term in 4530) [ClassicSimilarity], result of:
          0.079044946 = score(doc=4530,freq=2.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.36086982 = fieldWeight in 4530, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4530)
      0.25 = coord(1/4)
    
    Abstract
    This paper investigates the problem of the labelling of the library, documentation and information field with particular emphasis on the terms 'information' and 'document'. What influences introduced the concept of 'information' into the library field in the middle of the 20th century? What kind of theoretical orientation have dominated the field, and how are these orientations linked to epistemological assumptions? What is the implication of the recent influence of socially oriented epistemologies for such basic concepts in IS as 'information' and 'document'? The article explores these problems and advocates an approach with emphasis on documents and on the concept 'memory institution' as generic term for the central object of study
  9. Hjoerland, B.: ¬The phrase "information storage and retrieval" (IS&R) : an historical note (2015) 0.02
    0.019761236 = product of:
      0.079044946 = sum of:
        0.079044946 = weight(_text_:term in 1853) [ClassicSimilarity], result of:
          0.079044946 = score(doc=1853,freq=2.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.36086982 = fieldWeight in 1853, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1853)
      0.25 = coord(1/4)
    
    Abstract
    Scholars have uncovered abundant data about the history of the term "information," as well as some of its many combined phrases (e.g., "information science," "information retrieval," and "information technology"). Many other compounds that involve "information" seem, however, not to have a known origin yet. In this article, further information about the phrase "information storage and retrieval" is provided. Knowing the history of terms and their associated concepts is an important prescription against poor terminological phrasing and theoretical confusion.
  10. Hjoerland, B.: User-based and cognitive approaches to knowledge organization : a theoretical analysis of the research literature (2013) 0.02
    0.015736116 = product of:
      0.031472232 = sum of:
        0.01557172 = product of:
          0.06228688 = sum of:
            0.06228688 = weight(_text_:based in 629) [ClassicSimilarity], result of:
              0.06228688 = score(doc=629,freq=14.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.44037464 = fieldWeight in 629, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=629)
          0.25 = coord(1/4)
        0.015900511 = product of:
          0.031801023 = sum of:
            0.031801023 = weight(_text_:22 in 629) [ClassicSimilarity], result of:
              0.031801023 = score(doc=629,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.19345059 = fieldWeight in 629, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=629)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    In the 1970s and 1980s, forms of user-based and cognitive approaches to knowledge organization came to the forefront as part of the overall development in library and information science and in the broader society. The specific nature of user-based approaches is their basis in the empirical studies of users or the principle that users need to be involved in the construction of knowledge organization systems. It might seem obvious that user-friendly systems should be designed on user studies or user involvement, but extremely successful systems such as Apple's iPhone, Dialog's search system and Google's PageRank are not based on the empirical studies of users. In knowledge organization, the Book House System is one example of a system based on user studies. In cognitive science the important WordNet database is claimed to be based on psychological research. This article considers such examples. The role of the user is often confused with the role of subjectivity. Knowledge organization systems cannot be objective and must therefore, by implication, be based on some kind of subjectivity. This subjectivity should, however, be derived from collective views in discourse communities rather than be derived from studies of individuals or from the study ofabstract minds.
    Date
    22. 2.2013 11:49:13
  11. Hjoerland, B.: Semantics and knowledge organization (2007) 0.01
    0.014115169 = product of:
      0.056460675 = sum of:
        0.056460675 = weight(_text_:term in 1980) [ClassicSimilarity], result of:
          0.056460675 = score(doc=1980,freq=2.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.25776416 = fieldWeight in 1980, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1980)
      0.25 = coord(1/4)
    
    Abstract
    The aim of this chapter is to demonstrate that semantic issues underlie all research questions within Library and Information Science (LIS, or, as hereafter, IS) and, in particular, the subfield known as Knowledge Organization (KO). Further, it seeks to show that semantics is a field influenced by conflicting views and discusses why it is important to argue for the most fruitful one of these. Moreover, the chapter demonstrates that IS has not yet addressed semantic problems in systematic fashion and examines why the field is very fragmented and without a proper theoretical basis. The focus here is on broad interdisciplinary issues and the long-term perspective. The theoretical problems involving semantics and concepts are very complicated. Therefore, this chapter starts by considering tools developed in KO for information retrieval (IR) as basically semantic tools. In this way, it establishes a specific IS focus on the relation between KO and semantics. It is well known that thesauri consist of a selection of concepts supplemented with information about their semantic relations (such as generic relations or "associative relations"). Some words in thesauri are "preferred terms" (descriptors), whereas others are "lead-in terms." The descriptors represent concepts. The difference between "a word" and "a concept" is that different words may have the same meaning and similar words may have different meanings, whereas one concept expresses one meaning.
  12. Hjoerland, B.: Bibliographical control (2023) 0.01
    0.014115169 = product of:
      0.056460675 = sum of:
        0.056460675 = weight(_text_:term in 1131) [ClassicSimilarity], result of:
          0.056460675 = score(doc=1131,freq=2.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.25776416 = fieldWeight in 1131, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1131)
      0.25 = coord(1/4)
    
    Abstract
    Section 1 of this article discusses the concept of bibliographical control and makes a distinction between this term, "bibliographical description," and related terms, which are often confused in the literature. It further discusses the function of bibliographical control and criticizes Patrick Wilson's distinction between "exploitative control" and "descriptive control." Section 2 presents projects for establishing bibliographic control from the Library of Alexandria to the Internet and Google, and it is found that these projects have often been dominated by a positivist dream to make all information in the world available to everybody. Section 3 discusses the theoretical problems of providing comprehensive coverage and retrieving documents represented in databases and argues that 100% coverage and retrievability is an unobtainable ideal. It is shown that bibliographical control has been taken very seriously in the field of medicine, where knowledge of the most important findings is of utmost importance. In principle, it is equally important in all other domains. The conclusion states that the alternative to a positivist dream of complete bibliographic control is a pragmatic philosophy aiming at optimizing bibliographic control supporting specific activities, perspectives, and interests.
  13. Hjoerland, B.: Classical databases and knowledge organisation : a case for Boolean retrieval and human decision-making during search (2014) 0.01
    0.010893034 = product of:
      0.021786068 = sum of:
        0.005885557 = product of:
          0.023542227 = sum of:
            0.023542227 = weight(_text_:based in 1398) [ClassicSimilarity], result of:
              0.023542227 = score(doc=1398,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.16644597 = fieldWeight in 1398, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1398)
          0.25 = coord(1/4)
        0.015900511 = product of:
          0.031801023 = sum of:
            0.031801023 = weight(_text_:22 in 1398) [ClassicSimilarity], result of:
              0.031801023 = score(doc=1398,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.19345059 = fieldWeight in 1398, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1398)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This paper considers classical bibliographic databases based on the Boolean retrieval model (for example MEDLINE and PsycInfo). This model is challenged by modern search engines and information retrieval (IR) researchers, who often consider Boolean retrieval as a less efficient approach. This speech examines this claim and argues for the continued value of Boolean systems, which implies two further issues: (1) the important role of human expertise in searching (expert searchers and "information literacy") and (2) the role of knowledge organization (KO) in the design and use of classical databases, including controlled vocabularies and human indexing. An underlying issue is the kind of retrieval system for which one should aim. It is suggested that Julian Warner's (2010) differentiation between the computer science traditions, aiming at automatically transforming queries into (ranked) sets of relevant documents, and an older library-orientated tradition aiming at increasing the "selection power" of users seems important. The Boolean retrieval model is important in order to provide users with the power to make informed searches and have full control over what is found and what is not found. These issues may also have important implications for the maintenance of information science and KO as research fields as well as for the information profession as a profession in its own right.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  14. Capurro, R.; Hjoerland, B.: ¬The concept of information (2002) 0.01
    0.008469101 = product of:
      0.033876404 = sum of:
        0.033876404 = weight(_text_:term in 5079) [ClassicSimilarity], result of:
          0.033876404 = score(doc=5079,freq=2.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.1546585 = fieldWeight in 5079, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.0234375 = fieldNorm(doc=5079)
      0.25 = coord(1/4)
    
    Abstract
    Discussions about the concept of information in other disciplines are very important for IS because many theories and approaches in IS have their origins elsewhere (see the section "Information as an Interdisciplinary Concept" in this chapter). The epistemological concept of information brings into play nonhuman information processes, particularly in physics and biology. And vice versa: the psychic and sociological processes of selection and interpretation may be considered using objective parameters, leaving aside the semantic dimension, or more precisely, by considering objective or situational parameters of interpretation. This concept can be illustrated also in physical terms with regard to release mechanisms, as we suggest. Our overview of the concept of information in the natural sciences as well as in the humanities and social sciences cannot hope to be comprehensive. In most cases, we can refer only to fragments of theories. However, the reader may wish to follow the leads provided in the bibliography. Readers interested primarily in information science may derive most benefit from the section an "Information in Information Science," in which we offer a detailed explanation of diverse views and theories of information within our field; supplementing the recent ARIST chapter by Cornelius (2002). We show that the introduction of the concept of information circa 1950 to the domain of special librarianship and documentation has in itself had serious consequences for the types of knowledge and theories developed in our field. The important question is not only what meaning we give the term in IS, but also how it relates to other basic terms, such as documents, texts, and knowledge. Starting with an objectivist view from the world of information theory and cybernetics, information science has turned to the phenomena of relevance and interpretation as basic aspects of the concept of information. This change is in no way a turn to a subjectivist theory, but an appraisal of different perspectives that may determine in a particular context what is being considered as informative, be it a "thing" (Buckland, 1991b) or a document. Different concepts of information within information science reflect tensions between a subjective and an objective approach. The concept of interpretation or selection may be considered to be the bridge between these two poles. It is important, however, to consider the different professions involved with the interpretation and selection of knowledge. The most important thing in IS (as in information policy) is to consider information as a constitutive forte in society and, thus, recognize the teleological nature of information systems and services (Braman, 1989).
  15. Hjoerland, B.; Christensen, F.S.: Work tasks and socio-cognitive relevance : a specific example (2002) 0.01
    0.0055651786 = product of:
      0.022260714 = sum of:
        0.022260714 = product of:
          0.04452143 = sum of:
            0.04452143 = weight(_text_:22 in 5237) [ClassicSimilarity], result of:
              0.04452143 = score(doc=5237,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.2708308 = fieldWeight in 5237, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5237)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    21. 7.2006 14:11:22
  16. Hjoerland, B.: Theories of knowledge organization - theories of knowledge (2017) 0.01
    0.0055651786 = product of:
      0.022260714 = sum of:
        0.022260714 = product of:
          0.04452143 = sum of:
            0.04452143 = weight(_text_:22 in 3494) [ClassicSimilarity], result of:
              0.04452143 = score(doc=3494,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.2708308 = fieldWeight in 3494, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3494)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Pages
    S.22-36
  17. Hjoerland, B.: ¬The importance of theories of knowledge : indexing and information retrieval as an example (2011) 0.00
    0.0047701527 = product of:
      0.019080611 = sum of:
        0.019080611 = product of:
          0.038161222 = sum of:
            0.038161222 = weight(_text_:22 in 4359) [ClassicSimilarity], result of:
              0.038161222 = score(doc=4359,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.23214069 = fieldWeight in 4359, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4359)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    17. 3.2011 19:22:55
  18. Hjoerland, B.: Subject representation and information seeking : contributions to a theory based on the theory of knowledge (1993) 0.00
    0.00411989 = product of:
      0.01647956 = sum of:
        0.01647956 = product of:
          0.06591824 = sum of:
            0.06591824 = weight(_text_:based in 7555) [ClassicSimilarity], result of:
              0.06591824 = score(doc=7555,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.46604872 = fieldWeight in 7555, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.109375 = fieldNorm(doc=7555)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
  19. Hjoerland, B.: Table of contents (ToC) (2022) 0.00
    0.003975128 = product of:
      0.015900511 = sum of:
        0.015900511 = product of:
          0.031801023 = sum of:
            0.031801023 = weight(_text_:22 in 1096) [ClassicSimilarity], result of:
              0.031801023 = score(doc=1096,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.19345059 = fieldWeight in 1096, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1096)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    18.11.2023 13:47:22
  20. Hjoerland, B.: ¬The paradox of atheoretical classification (2016) 0.00
    0.0035313342 = product of:
      0.014125337 = sum of:
        0.014125337 = product of:
          0.056501348 = sum of:
            0.056501348 = weight(_text_:based in 3169) [ClassicSimilarity], result of:
              0.056501348 = score(doc=3169,freq=8.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.39947033 = fieldWeight in 3169, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3169)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    A distinction can be made between "artificial classifications" and "natural classifications," where artificial classifications may adequately serve some limited purposes, but natural classifications are overall most fruitful by allowing inference and thus many different purposes. There is strong support for the view that a natural classification should be based on a theory (and, of course, that the most fruitful theory provides the most fruitful classification). Nevertheless, atheoretical (or "descriptive") classifications are often produced. Paradoxically, atheoretical classifications may be very successful. The best example of a successful "atheoretical" classification is probably the prestigious Diagnostic and Statistical Manual of Mental Disorders (DSM) since its third edition from 1980. Based on such successes one may ask: Should the claim that classifications ideally are natural and theory-based be reconsidered? This paper argues that the seemingly success of atheoretical classifications hides deeper problems and that the ideal of theory-based classification should be maintained.