Search (62 results, page 1 of 4)

  • × year_i:[2010 TO 2020}
  • × theme_ss:"Retrievalalgorithmen"
  1. Behnert, C.; Borst, T.: Neue Formen der Relevanz-Sortierung in bibliothekarischen Informationssystemen : das DFG-Projekt LibRank (2015) 0.07
    0.06832276 = product of:
      0.13664553 = sum of:
        0.0523083 = weight(_text_:von in 5392) [ClassicSimilarity], result of:
          0.0523083 = score(doc=5392,freq=6.0), product of:
            0.12806706 = queryWeight, product of:
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.04800207 = queryNorm
            0.40844458 = fieldWeight in 5392, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.0625 = fieldNorm(doc=5392)
        0.084337234 = product of:
          0.12650585 = sum of:
            0.005640907 = weight(_text_:a in 5392) [ClassicSimilarity], result of:
              0.005640907 = score(doc=5392,freq=2.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.10191591 = fieldWeight in 5392, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5392)
            0.12086495 = weight(_text_:z in 5392) [ClassicSimilarity], result of:
              0.12086495 = score(doc=5392,freq=2.0), product of:
                0.2562021 = queryWeight, product of:
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.04800207 = queryNorm
                0.47175628 = fieldWeight in 5392, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5392)
          0.6666667 = coord(2/3)
      0.5 = coord(2/4)
    
    Abstract
    Das von der DFG geförderte Projekt LibRank erforscht neue Rankingverfahren für bibliothekarische Informationssysteme, die aufbauend auf Erkenntnissen aus dem Bereich Websuche qualitätsinduzierende Faktoren wie z. B. Aktualität, Popularität und Verfügbarkeit von einzelnen Medien berücksichtigen. Die konzipierten Verfahren werden im Kontext eines in den Wirtschaftswissenschaften häufig genutzten Rechercheportals (EconBiz) entwickelt und in einem Testsystem systematisch evaluiert. Es werden Rankingfaktoren, die für den Bibliotheksbereich von besonderem Interesse sind, vorgestellt und exemplarisch Probleme und Herausforderungen aufgezeigt.
    Type
    a
  2. Behnert, C.; Plassmeier, K.; Borst, T.; Lewandowski, D.: Evaluierung von Rankingverfahren für bibliothekarische Informationssysteme (2019) 0.06
    0.06332272 = product of:
      0.12664545 = sum of:
        0.052850362 = weight(_text_:von in 5023) [ClassicSimilarity], result of:
          0.052850362 = score(doc=5023,freq=8.0), product of:
            0.12806706 = queryWeight, product of:
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.04800207 = queryNorm
            0.41267726 = fieldWeight in 5023, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5023)
        0.07379509 = product of:
          0.11069263 = sum of:
            0.004935794 = weight(_text_:a in 5023) [ClassicSimilarity], result of:
              0.004935794 = score(doc=5023,freq=2.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.089176424 = fieldWeight in 5023, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5023)
            0.105756834 = weight(_text_:z in 5023) [ClassicSimilarity], result of:
              0.105756834 = score(doc=5023,freq=2.0), product of:
                0.2562021 = queryWeight, product of:
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.04800207 = queryNorm
                0.41278675 = fieldWeight in 5023, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5023)
          0.6666667 = coord(2/3)
      0.5 = coord(2/4)
    
    Abstract
    Dieser Beitrag beschreibt eine Studie zur Entwicklung und Evaluierung von Rankingverfahren für bibliothekarische Informationssysteme. Dazu wurden mögliche Faktoren für das Relevanzranking ausgehend von den Verfahren in Websuchmaschinen identifiziert, auf den Bibliothekskontext übertragen und systematisch evaluiert. Mithilfe eines Testsystems, das auf dem ZBW-Informationsportal EconBiz und einer web-basierten Software zur Evaluierung von Suchsystemen aufsetzt, wurden verschiedene Relevanzfaktoren (z. B. Popularität in Verbindung mit Aktualität) getestet. Obwohl die getesteten Rankingverfahren auf einer theoretischen Ebene divers sind, konnten keine einheitlichen Verbesserungen gegenüber den Baseline-Rankings gemessen werden. Die Ergebnisse deuten darauf hin, dass eine Adaptierung des Rankings auf individuelle Nutzer bzw. Nutzungskontexte notwendig sein könnte, um eine höhere Performance zu erzielen.
    Type
    a
  3. Hora, M.: Methoden für das Ranking in Discovery-Systemen (2018) 0.05
    0.050110135 = product of:
      0.10022027 = sum of:
        0.026425181 = weight(_text_:von in 4968) [ClassicSimilarity], result of:
          0.026425181 = score(doc=4968,freq=2.0), product of:
            0.12806706 = queryWeight, product of:
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.04800207 = queryNorm
            0.20633863 = fieldWeight in 4968, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4968)
        0.07379509 = product of:
          0.11069263 = sum of:
            0.004935794 = weight(_text_:a in 4968) [ClassicSimilarity], result of:
              0.004935794 = score(doc=4968,freq=2.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.089176424 = fieldWeight in 4968, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4968)
            0.105756834 = weight(_text_:z in 4968) [ClassicSimilarity], result of:
              0.105756834 = score(doc=4968,freq=2.0), product of:
                0.2562021 = queryWeight, product of:
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.04800207 = queryNorm
                0.41278675 = fieldWeight in 4968, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4968)
          0.6666667 = coord(2/3)
      0.5 = coord(2/4)
    
    Abstract
    Discovery-Systeme bieten meist als Standardeinstellung eine Sortierung nach Relevanz an. Wie die Relevanz ermittelt wird, ist häufig intransparent. Dabei wären Kenntnisse darüber aus Nutzersicht ein wichtiger Faktor in der Informationskompetenz, während Bibliotheken sicherstellen sollten, dass das Ranking zum eigenen Bestand und Publikum passt. In diesem Aufsatz wird dargestellt, wie Discovery-Systeme Treffer auswählen und bewerten. Dazu gehören Indexierung, Prozessierung, Text-Matching und weitere Relevanzkriterien, z. B. Popularität oder Verfügbarkeit. Schließlich müssen alle betrachteten Kriterien zu einem zentralen Score zusammengefasst werden. Ein besonderer Fokus wird auf das Ranking von EBSCO Discovery Service, Primo und Summon gelegt.
    Type
    a
  4. Tober, M.; Hennig, L.; Furch, D.: SEO Ranking-Faktoren und Rang-Korrelationen 2014 : Google Deutschland (2014) 0.03
    0.03482564 = product of:
      0.06965128 = sum of:
        0.0523083 = weight(_text_:von in 1484) [ClassicSimilarity], result of:
          0.0523083 = score(doc=1484,freq=6.0), product of:
            0.12806706 = queryWeight, product of:
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.04800207 = queryNorm
            0.40844458 = fieldWeight in 1484, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.0625 = fieldNorm(doc=1484)
        0.017342983 = product of:
          0.052028947 = sum of:
            0.052028947 = weight(_text_:22 in 1484) [ClassicSimilarity], result of:
              0.052028947 = score(doc=1484,freq=2.0), product of:
                0.16809508 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04800207 = queryNorm
                0.30952093 = fieldWeight in 1484, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1484)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    Dieses Whitepaper beschäftigt sich mit der Definition und Bewertung von Faktoren, die eine hohe Rangkorrelation-Koeffizienz mit organischen Suchergebnissen aufweisen und dient dem Zweck der tieferen Analyse von Suchmaschinen-Algorithmen. Die Datenerhebung samt Auswertung bezieht sich auf Ranking-Faktoren für Google-Deutschland im Jahr 2014. Zusätzlich wurden die Korrelationen und Faktoren unter anderem anhand von Durchschnitts- und Medianwerten sowie Entwicklungstendenzen zu den Vorjahren hinsichtlich ihrer Relevanz für vordere Suchergebnis-Positionen interpretiert.
    Date
    13. 9.2014 14:45:22
  5. Fuhr, N.: Modelle im Information Retrieval (2013) 0.03
    0.027868655 = product of:
      0.05573731 = sum of:
        0.05338693 = weight(_text_:von in 724) [ClassicSimilarity], result of:
          0.05338693 = score(doc=724,freq=4.0), product of:
            0.12806706 = queryWeight, product of:
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.04800207 = queryNorm
            0.416867 = fieldWeight in 724, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.078125 = fieldNorm(doc=724)
        0.002350378 = product of:
          0.007051134 = sum of:
            0.007051134 = weight(_text_:a in 724) [ClassicSimilarity], result of:
              0.007051134 = score(doc=724,freq=2.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.12739488 = fieldWeight in 724, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=724)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Source
    Grundlagen der praktischen Information und Dokumentation. Handbuch zur Einführung in die Informationswissenschaft und -praxis. 6., völlig neu gefaßte Ausgabe. Hrsg. von R. Kuhlen, W. Semar u. D. Strauch. Begründet von Klaus Laisiepen, Ernst Lutterbeck, Karl-Heinrich Meyer-Uhlenried
    Type
    a
  6. Mayr, P.: Bradfordizing mit Katalogdaten : Alternative Sicht auf Suchergebnisse und Publikationsquellen durch Re-Ranking (2010) 0.02
    0.020320725 = product of:
      0.04064145 = sum of:
        0.039231222 = weight(_text_:von in 4301) [ClassicSimilarity], result of:
          0.039231222 = score(doc=4301,freq=6.0), product of:
            0.12806706 = queryWeight, product of:
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.04800207 = queryNorm
            0.30633342 = fieldWeight in 4301, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.046875 = fieldNorm(doc=4301)
        0.001410227 = product of:
          0.004230681 = sum of:
            0.004230681 = weight(_text_:a in 4301) [ClassicSimilarity], result of:
              0.004230681 = score(doc=4301,freq=2.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.07643694 = fieldWeight in 4301, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4301)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    Nutzer erwarten für Literaturrecherchen in wissenschaftlichen Suchsystemen einen möglichst hohen Anteil an relevanten und qualitativen Dokumenten in den Trefferergebnissen. Insbesondere die Reihenfolge und Struktur der gelisteten Ergebnisse (Ranking) spielt, neben dem direkten Volltextzugriff auf die Dokumente, für viele Nutzer inzwischen eine entscheidende Rolle. Abgegrenzt wird Ranking oder Relevance Ranking von sogenannten Sortierungen zum Beispiel nach dem Erscheinungsjahr der Publikation, obwohl hier die Grenze zu »nach inhaltlicher Relevanz« gerankten Listen konzeptuell nicht sauber zu ziehen ist. Das Ranking von Dokumenten führt letztlich dazu, dass sich die Benutzer fokussiert mit den oberen Treffermengen eines Suchergebnisses beschäftigen. Der mittlere und untere Bereich eines Suchergebnisses wird häufig nicht mehr in Betracht gezogen. Aufgrund der Vielzahl an relevanten und verfügbaren Informationsquellen ist es daher notwendig, Kernbereiche in den Suchräumen zu identifizieren und diese anschließend dem Nutzer hervorgehoben zu präsentieren. Phillipp Mayr fasst hier die Ergebnisse seiner Dissertation zum Thema »Re-Ranking auf Basis von Bradfordizing für die verteilte Suche in Digitalen Bibliotheken« zusammen.
    Type
    a
  7. Oberhauser, O.: Relevance Ranking in den Online-Katalogen der "nächsten Generation" (2010) 0.02
    0.016721193 = product of:
      0.033442385 = sum of:
        0.03203216 = weight(_text_:von in 4308) [ClassicSimilarity], result of:
          0.03203216 = score(doc=4308,freq=4.0), product of:
            0.12806706 = queryWeight, product of:
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.04800207 = queryNorm
            0.2501202 = fieldWeight in 4308, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.046875 = fieldNorm(doc=4308)
        0.001410227 = product of:
          0.004230681 = sum of:
            0.004230681 = weight(_text_:a in 4308) [ClassicSimilarity], result of:
              0.004230681 = score(doc=4308,freq=2.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.07643694 = fieldWeight in 4308, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4308)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    Relevance Ranking in Online-Katalogen ist zwar kein neues Thema, doch liegt dazu nicht allzu viel Literatur vor, die das Prädikat "ernstzunehmen" verdient. Dies ist zum einen darin begründet, dass das Interesse an der Ausgabe ranggereihter Ergebnislisten auf Seiten aller Beteiligter (Bibliothekare, Softwarehersteller, Benutzer) traditionell gering war. Zum anderen ging die seit einigen Jahren populär gewordene Kritik an den bestehenden OPACs vielfach von einer unzureichenden Wissensbasis aus und produzierte oft nur polemische oder emotional gefärbte Beiträge, die zum Thema Ranking wenig beitrugen. ... Der hier beschriebene Test ist natürlich in keiner Weise erschöpfend oder repräsentativ. Dennoch gibt er, wie ich glaube, Anlass zu einiger Hoffnung. Er lässt vermuten, dass die "neuen" OPACs - zumindest was das Relevance Ranking betrifft - auf dem Weg in die richtige Richtung sind. Wie gut es wirklich gelingen wird, die Rankingleistung von Suchmaschinen wie Google, die unter völlig anderen Voraussetzungen arbeiten, einzuholen, wird aber erst die Zukunft zeigen.
    Type
    a
  8. Li, H.; Wu, H.; Li, D.; Lin, S.; Su, Z.; Luo, X.: PSI: A probabilistic semantic interpretable framework for fine-grained image ranking (2018) 0.02
    0.016518347 = product of:
      0.06607339 = sum of:
        0.06607339 = product of:
          0.09911008 = sum of:
            0.008461362 = weight(_text_:a in 4577) [ClassicSimilarity], result of:
              0.008461362 = score(doc=4577,freq=8.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.15287387 = fieldWeight in 4577, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4577)
            0.09064872 = weight(_text_:z in 4577) [ClassicSimilarity], result of:
              0.09064872 = score(doc=4577,freq=2.0), product of:
                0.2562021 = queryWeight, product of:
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.04800207 = queryNorm
                0.35381722 = fieldWeight in 4577, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4577)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    Image Ranking is one of the key problems in information science research area. However, most current methods focus on increasing the performance, leaving the semantic gap problem, which refers to the learned ranking models are hard to be understood, remaining intact. Therefore, in this article, we aim at learning an interpretable ranking model to tackle the semantic gap in fine-grained image ranking. We propose to combine attribute-based representation and online passive-aggressive (PA) learning based ranking models to achieve this goal. Besides, considering the highly localized instances in fine-grained image ranking, we introduce a supervised constrained clustering method to gather class-balanced training instances for local PA-based models, and incorporate the learned local models into a unified probabilistic framework. Extensive experiments on the benchmark demonstrate that the proposed framework outperforms state-of-the-art methods in terms of accuracy and speed.
    Type
    a
  9. Jiang, X.; Sun, X.; Yang, Z.; Zhuge, H.; Lapshinova-Koltunski, E.; Yao, J.: Exploiting heterogeneous scientific literature networks to combat ranking bias : evidence from the computational linguistics area (2016) 0.01
    0.0142520685 = product of:
      0.057008274 = sum of:
        0.057008274 = product of:
          0.08551241 = sum of:
            0.0099718105 = weight(_text_:a in 3017) [ClassicSimilarity], result of:
              0.0099718105 = score(doc=3017,freq=16.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.18016359 = fieldWeight in 3017, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3017)
            0.075540595 = weight(_text_:z in 3017) [ClassicSimilarity], result of:
              0.075540595 = score(doc=3017,freq=2.0), product of:
                0.2562021 = queryWeight, product of:
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.04800207 = queryNorm
                0.29484767 = fieldWeight in 3017, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3017)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    It is important to help researchers find valuable papers from a large literature collection. To this end, many graph-based ranking algorithms have been proposed. However, most of these algorithms suffer from the problem of ranking bias. Ranking bias hurts the usefulness of a ranking algorithm because it returns a ranking list with an undesirable time distribution. This paper is a focused study on how to alleviate ranking bias by leveraging the heterogeneous network structure of the literature collection. We propose a new graph-based ranking algorithm, MutualRank, that integrates mutual reinforcement relationships among networks of papers, researchers, and venues to achieve a more synthetic, accurate, and less-biased ranking than previous methods. MutualRank provides a unified model that involves both intra- and inter-network information for ranking papers, researchers, and venues simultaneously. We use the ACL Anthology Network as the benchmark data set and construct the gold standard from computer linguistics course websites of well-known universities and two well-known textbooks. The experimental results show that MutualRank greatly outperforms the state-of-the-art competitors, including PageRank, HITS, CoRank, Future Rank, and P-Rank, in ranking papers in both improving ranking effectiveness and alleviating ranking bias. Rankings of researchers and venues by MutualRank are also quite reasonable.
    Type
    a
  10. Zhu, J.; Han, L.; Gou, Z.; Yuan, X.: ¬A fuzzy clustering-based denoising model for evaluating uncertainty in collaborative filtering recommender systems (2018) 0.01
    0.014144729 = product of:
      0.056578916 = sum of:
        0.056578916 = product of:
          0.08486837 = sum of:
            0.009327774 = weight(_text_:a in 4460) [ClassicSimilarity], result of:
              0.009327774 = score(doc=4460,freq=14.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.1685276 = fieldWeight in 4460, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4460)
            0.075540595 = weight(_text_:z in 4460) [ClassicSimilarity], result of:
              0.075540595 = score(doc=4460,freq=2.0), product of:
                0.2562021 = queryWeight, product of:
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.04800207 = queryNorm
                0.29484767 = fieldWeight in 4460, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4460)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    Recommender systems are effective in predicting the most suitable products for users, such as movies and books. To facilitate personalized recommendations, the quality of item ratings should be guaranteed. However, a few ratings might not be accurate enough due to the uncertainty of user behavior and are referred to as natural noise. In this article, we present a novel fuzzy clustering-based method for detecting noisy ratings. The entropy of a subset of the original ratings dataset is used to indicate the data-driven uncertainty, and evaluation metrics are adopted to represent the prediction-driven uncertainty. After the repetition of resampling and the execution of a recommendation algorithm, the entropy and evaluation metrics vectors are obtained and are empirically categorized to identify the proportion of the potential noise. Then, the fuzzy C-means-based denoising (FCMD) algorithm is performed to verify the natural noise under the assumption that natural noise is primarily the result of the exceptional behavior of users. Finally, a case study is performed using two real-world datasets. The experimental results show that our proposal outperforms previous proposals and has an advantage in dealing with natural noise.
    Type
    a
  11. Ye, Z.; Huang, J.X.: ¬A learning to rank approach for quality-aware pseudo-relevance feedback (2016) 0.01
    0.013904001 = product of:
      0.055616003 = sum of:
        0.055616003 = product of:
          0.083424 = sum of:
            0.007883408 = weight(_text_:a in 2855) [ClassicSimilarity], result of:
              0.007883408 = score(doc=2855,freq=10.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.14243183 = fieldWeight in 2855, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2855)
            0.075540595 = weight(_text_:z in 2855) [ClassicSimilarity], result of:
              0.075540595 = score(doc=2855,freq=2.0), product of:
                0.2562021 = queryWeight, product of:
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.04800207 = queryNorm
                0.29484767 = fieldWeight in 2855, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2855)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    Pseudo relevance feedback (PRF) has shown to be effective in ad hoc information retrieval. In traditional PRF methods, top-ranked documents are all assumed to be relevant and therefore treated equally in the feedback process. However, the performance gain brought by each document is different as showed in our preliminary experiments. Thus, it is more reasonable to predict the performance gain brought by each candidate feedback document in the process of PRF. We define the quality level (QL) and then use this information to adjust the weights of feedback terms in these documents. Unlike previous work, we do not make any explicit relevance assumption and we go beyond just selecting "good" documents for PRF. We propose a quality-based PRF framework, in which two quality-based assumptions are introduced. Particularly, two different strategies, relevance-based QL (RelPRF) and improvement-based QL (ImpPRF) are presented to estimate the QL of each feedback document. Based on this, we select a set of heterogeneous document-level features and apply a learning approach to evaluate the QL of each feedback document. Extensive experiments on standard TREC (Text REtrieval Conference) test collections show that our proposed model performs robustly and outperforms strong baselines significantly.
    Type
    a
  12. Tsai, C.-F.; Hu, Y.-H.; Chen, Z.-Y.: Factors affecting rocchio-based pseudorelevance feedback in image retrieval (2015) 0.01
    0.013421084 = product of:
      0.053684335 = sum of:
        0.053684335 = product of:
          0.0805265 = sum of:
            0.0049859053 = weight(_text_:a in 1607) [ClassicSimilarity], result of:
              0.0049859053 = score(doc=1607,freq=4.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.090081796 = fieldWeight in 1607, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1607)
            0.075540595 = weight(_text_:z in 1607) [ClassicSimilarity], result of:
              0.075540595 = score(doc=1607,freq=2.0), product of:
                0.2562021 = queryWeight, product of:
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.04800207 = queryNorm
                0.29484767 = fieldWeight in 1607, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1607)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    Pseudorelevance feedback (PRF) was proposed to solve the limitation of relevance feedback (RF), which is based on the user-in-the-loop process. In PRF, the top-k retrieved images are regarded as PRF. Although the PRF set contains noise, PRF has proven effective for automatically improving the overall retrieval result. To implement PRF, the Rocchio algorithm has been considered as a reasonable and well-established baseline. However, the performance of Rocchio-based PRF is subject to various representation choices (or factors). In this article, we examine these factors that affect the performance of Rocchio-based PRF, including image-feature representation, the number of top-ranked images, the weighting parameters of Rocchio, and similarity measure. We offer practical insights on how to optimize the performance of Rocchio-based PRF by choosing appropriate representation choices. Our extensive experiments on NUS-WIDE-LITE and Caltech 101 + Corel 5000 data sets show that the optimal feature representation is color moment + wavelet texture in terms of retrieval efficiency and effectiveness. Other representation choices are that using top-20 ranked images as pseudopositive and pseudonegative feedback sets with the equal weight (i.e., 0.5) by the correlation and cosine distance functions can produce the optimal retrieval result.
    Type
    a
  13. Mayr, P.: Bradfordizing als Re-Ranking-Ansatz in Literaturinformationssystemen (2011) 0.01
    0.012030191 = product of:
      0.024060382 = sum of:
        0.022650154 = weight(_text_:von in 4292) [ClassicSimilarity], result of:
          0.022650154 = score(doc=4292,freq=2.0), product of:
            0.12806706 = queryWeight, product of:
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.04800207 = queryNorm
            0.17686167 = fieldWeight in 4292, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.046875 = fieldNorm(doc=4292)
        0.001410227 = product of:
          0.004230681 = sum of:
            0.004230681 = weight(_text_:a in 4292) [ClassicSimilarity], result of:
              0.004230681 = score(doc=4292,freq=2.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.07643694 = fieldWeight in 4292, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4292)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    In diesem Artikel wird ein Re-Ranking-Ansatz für Suchsysteme vorgestellt, der die Recherche nach wissenschaftlicher Literatur messbar verbessern kann. Das nichttextorientierte Rankingverfahren Bradfordizing wird eingeführt und anschließend im empirischen Teil des Artikels bzgl. der Effektivität für typische fachbezogene Recherche-Topics evaluiert. Dem Bradford Law of Scattering (BLS), auf dem Bradfordizing basiert, liegt zugrunde, dass sich die Literatur zu einem beliebigen Fachgebiet bzw. -thema in Zonen unterschiedlicher Dokumentenkonzentration verteilt. Dem Kernbereich mit hoher Konzentration der Literatur folgen Bereiche mit mittlerer und geringer Konzentration. Bradfordizing sortiert bzw. rankt eine Dokumentmenge damit nach den sogenannten Kernzeitschriften. Der Retrievaltest mit 164 intellektuell bewerteten Fragestellungen in Fachdatenbanken aus den Bereichen Sozial- und Politikwissenschaften, Wirtschaftswissenschaften, Psychologie und Medizin zeigt, dass die Dokumente der Kernzeitschriften signifikant häufiger relevant bewertet werden als Dokumente der zweiten Dokumentzone bzw. den Peripherie-Zeitschriften. Die Implementierung von Bradfordizing und weiteren Re-Rankingverfahren liefert unmittelbare Mehrwerte für den Nutzer.
    Type
    a
  14. Bornmann, L.; Mutz, R.: From P100 to P100' : a new citation-rank approach (2014) 0.01
    0.0105517935 = product of:
      0.042207174 = sum of:
        0.042207174 = product of:
          0.06331076 = sum of:
            0.011281814 = weight(_text_:a in 1431) [ClassicSimilarity], result of:
              0.011281814 = score(doc=1431,freq=8.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.20383182 = fieldWeight in 1431, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1431)
            0.052028947 = weight(_text_:22 in 1431) [ClassicSimilarity], result of:
              0.052028947 = score(doc=1431,freq=2.0), product of:
                0.16809508 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04800207 = queryNorm
                0.30952093 = fieldWeight in 1431, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1431)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    Properties of a percentile-based rating scale needed in bibliometrics are formulated. Based on these properties, P100 was recently introduced as a new citation-rank approach (Bornmann, Leydesdorff, & Wang, 2013). In this paper, we conceptualize P100 and propose an improvement which we call P100'. Advantages and disadvantages of citation-rank indicators are noted.
    Date
    22. 8.2014 17:05:18
    Type
    a
  15. Walz, J.: Analyse der Übertragbarkeit allgemeiner Rankingfaktoren von Web-Suchmaschinen auf Discovery-Systeme (2018) 0.01
    0.0098078055 = product of:
      0.039231222 = sum of:
        0.039231222 = weight(_text_:von in 5744) [ClassicSimilarity], result of:
          0.039231222 = score(doc=5744,freq=6.0), product of:
            0.12806706 = queryWeight, product of:
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.04800207 = queryNorm
            0.30633342 = fieldWeight in 5744, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.046875 = fieldNorm(doc=5744)
      0.25 = coord(1/4)
    
    Abstract
    Ziel: Ziel dieser Bachelorarbeit war es, die Übertragbarkeit der allgemeinen Rankingfaktoren, wie sie von Web-Suchmaschinen verwendet werden, auf Discovery-Systeme zu analysieren. Dadurch könnte das bisher hauptsächlich auf dem textuellen Abgleich zwischen Suchanfrage und Dokumenten basierende bibliothekarische Ranking verbessert werden. Methode: Hierfür wurden Faktoren aus den Gruppen Popularität, Aktualität, Lokalität, Technische Faktoren, sowie dem personalisierten Ranking diskutiert. Die entsprechenden Rankingfaktoren wurden nach ihrer Vorkommenshäufigkeit in der analysierten Literatur und der daraus abgeleiteten Wichtigkeit, ausgewählt. Ergebnis: Von den 23 untersuchten Rankingfaktoren sind 14 (61 %) direkt vom Ranking der Web-Suchmaschinen auf das Ranking der Discovery-Systeme übertragbar. Zu diesen zählen unter anderem das Klickverhalten, das Erstellungsdatum, der Nutzerstandort, sowie die Sprache. Sechs (26%) der untersuchten Faktoren sind dagegen nicht übertragbar (z.B. Aktualisierungsfrequenz und Ladegeschwindigkeit). Die Linktopologie, die Nutzungshäufigkeit, sowie die Aktualisierungsfrequenz sind mit entsprechenden Modifikationen übertragbar.
  16. Ravana, S.D.; Rajagopal, P.; Balakrishnan, V.: Ranking retrieval systems using pseudo relevance judgments (2015) 0.01
    0.008978489 = product of:
      0.035913955 = sum of:
        0.035913955 = product of:
          0.05387093 = sum of:
            0.007883408 = weight(_text_:a in 2591) [ClassicSimilarity], result of:
              0.007883408 = score(doc=2591,freq=10.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.14243183 = fieldWeight in 2591, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2591)
            0.045987524 = weight(_text_:22 in 2591) [ClassicSimilarity], result of:
              0.045987524 = score(doc=2591,freq=4.0), product of:
                0.16809508 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04800207 = queryNorm
                0.27358043 = fieldWeight in 2591, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2591)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    Purpose In a system-based approach, replicating the web would require large test collections, and judging the relevancy of all documents per topic in creating relevance judgment through human assessors is infeasible. Due to the large amount of documents that requires judgment, there are possible errors introduced by human assessors because of disagreements. The paper aims to discuss these issues. Design/methodology/approach This study explores exponential variation and document ranking methods that generate a reliable set of relevance judgments (pseudo relevance judgments) to reduce human efforts. These methods overcome problems with large amounts of documents for judgment while avoiding human disagreement errors during the judgment process. This study utilizes two key factors: number of occurrences of each document per topic from all the system runs; and document rankings to generate the alternate methods. Findings The effectiveness of the proposed method is evaluated using the correlation coefficient of ranked systems using mean average precision scores between the original Text REtrieval Conference (TREC) relevance judgments and pseudo relevance judgments. The results suggest that the proposed document ranking method with a pool depth of 100 could be a reliable alternative to reduce human effort and disagreement errors involved in generating TREC-like relevance judgments. Originality/value Simple methods proposed in this study show improvement in the correlation coefficient in generating alternate relevance judgment without human assessors while contributing to information retrieval evaluation.
    Date
    20. 1.2015 18:30:22
    18. 9.2018 18:22:56
    Type
    a
  17. Soulier, L.; Jabeur, L.B.; Tamine, L.; Bahsoun, W.: On ranking relevant entities in heterogeneous networks using a language-based model (2013) 0.01
    0.0072778193 = product of:
      0.029111277 = sum of:
        0.029111277 = product of:
          0.043666914 = sum of:
            0.0111488225 = weight(_text_:a in 664) [ClassicSimilarity], result of:
              0.0111488225 = score(doc=664,freq=20.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.20142901 = fieldWeight in 664, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=664)
            0.032518093 = weight(_text_:22 in 664) [ClassicSimilarity], result of:
              0.032518093 = score(doc=664,freq=2.0), product of:
                0.16809508 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04800207 = queryNorm
                0.19345059 = fieldWeight in 664, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=664)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    A new challenge, accessing multiple relevant entities, arises from the availability of linked heterogeneous data. In this article, we address more specifically the problem of accessing relevant entities, such as publications and authors within a bibliographic network, given an information need. We propose a novel algorithm, called BibRank, that estimates a joint relevance of documents and authors within a bibliographic network. This model ranks each type of entity using a score propagation algorithm with respect to the query topic and the structure of the underlying bi-type information entity network. Evidence sources, namely content-based and network-based scores, are both used to estimate the topical similarity between connected entities. For this purpose, authorship relationships are analyzed through a language model-based score on the one hand and on the other hand, non topically related entities of the same type are detected through marginal citations. The article reports the results of experiments using the Bibrank algorithm for an information retrieval task. The CiteSeerX bibliographic data set forms the basis for the topical query automatic generation and evaluation. We show that a statistically significant improvement over closely related ranking models is achieved.
    Date
    22. 3.2013 19:34:49
    Type
    a
  18. Baloh, P.; Desouza, K.C.; Hackney, R.: Contextualizing organizational interventions of knowledge management systems : a design science perspectiveA domain analysis (2012) 0.01
    0.0067335833 = product of:
      0.026934333 = sum of:
        0.026934333 = product of:
          0.0404015 = sum of:
            0.007883408 = weight(_text_:a in 241) [ClassicSimilarity], result of:
              0.007883408 = score(doc=241,freq=10.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.14243183 = fieldWeight in 241, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=241)
            0.032518093 = weight(_text_:22 in 241) [ClassicSimilarity], result of:
              0.032518093 = score(doc=241,freq=2.0), product of:
                0.16809508 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04800207 = queryNorm
                0.19345059 = fieldWeight in 241, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=241)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    We address how individuals' (workers) knowledge needs influence the design of knowledge management systems (KMS), enabling knowledge creation and utilization. It is evident that KMS technologies and activities are indiscriminately deployed in most organizations with little regard to the actual context of their adoption. Moreover, it is apparent that the extant literature pertaining to knowledge management projects is frequently deficient in identifying the variety of factors indicative for successful KMS. This presents an obvious business practice and research gap that requires a critical analysis of the necessary intervention that will actually improve how workers can leverage and form organization-wide knowledge. This research involved an extensive review of the literature, a grounded theory methodological approach and rigorous data collection and synthesis through an empirical case analysis (Parsons Brinckerhoff and Samsung). The contribution of this study is the formulation of a model for designing KMS based upon the design science paradigm, which aspires to create artifacts that are interdependent of people and organizations. The essential proposition is that KMS design and implementation must be contextualized in relation to knowledge needs and that these will differ for various organizational settings. The findings present valuable insights and further understanding of the way in which KMS design efforts should be focused.
    Date
    11. 6.2012 14:22:34
    Type
    a
  19. Bauckhage, C.: Marginalizing over the PageRank damping factor (2014) 0.00
    0.001175189 = product of:
      0.004700756 = sum of:
        0.004700756 = product of:
          0.014102268 = sum of:
            0.014102268 = weight(_text_:a in 928) [ClassicSimilarity], result of:
              0.014102268 = score(doc=928,freq=8.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.25478977 = fieldWeight in 928, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=928)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    In this note, we show how to marginalize over the damping parameter of the PageRank equation so as to obtain a parameter-free version known as TotalRank. Our discussion is meant as a reference and intended to provide a guided tour towards an interesting result that has applications in information retrieval and classification.
    Type
    a
  20. Silva, R.M.; Gonçalves, M.A.; Veloso, A.: ¬A Two-stage active learning method for learning to rank (2014) 0.00
    0.0010593012 = product of:
      0.004237205 = sum of:
        0.004237205 = product of:
          0.012711613 = sum of:
            0.012711613 = weight(_text_:a in 1184) [ClassicSimilarity], result of:
              0.012711613 = score(doc=1184,freq=26.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.22966442 = fieldWeight in 1184, product of:
                  5.0990195 = tf(freq=26.0), with freq of:
                    26.0 = termFreq=26.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1184)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    Learning to rank (L2R) algorithms use a labeled training set to generate a ranking model that can later be used to rank new query results. These training sets are costly and laborious to produce, requiring human annotators to assess the relevance or order of the documents in relation to a query. Active learning algorithms are able to reduce the labeling effort by selectively sampling an unlabeled set and choosing data instances that maximize a learning function's effectiveness. In this article, we propose a novel two-stage active learning method for L2R that combines and exploits interesting properties of its constituent parts, thus being effective and practical. In the first stage, an association rule active sampling algorithm is used to select a very small but effective initial training set. In the second stage, a query-by-committee strategy trained with the first-stage set is used to iteratively select more examples until a preset labeling budget is met or a target effectiveness is achieved. We test our method with various LETOR benchmarking data sets and compare it with several baselines to show that it achieves good results using only a small portion of the original training sets.
    Type
    a

Languages

  • e 51
  • d 11

Types

  • a 59
  • el 2
  • r 1
  • x 1
  • More… Less…