Search (64 results, page 1 of 4)

  • × theme_ss:"Data Mining"
  1. Baeza-Yates, R.; Hurtado, C.; Mendoza, M.: Improving search engines by query clustering (2007) 0.18
    0.18021733 = product of:
      0.24028978 = sum of:
        0.07053544 = weight(_text_:web in 601) [ClassicSimilarity], result of:
          0.07053544 = score(doc=601,freq=6.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.43716836 = fieldWeight in 601, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=601)
        0.09238163 = weight(_text_:search in 601) [ClassicSimilarity], result of:
          0.09238163 = score(doc=601,freq=8.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.5376164 = fieldWeight in 601, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0546875 = fieldNorm(doc=601)
        0.07737271 = product of:
          0.15474541 = sum of:
            0.15474541 = weight(_text_:engine in 601) [ClassicSimilarity], result of:
              0.15474541 = score(doc=601,freq=4.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.5851013 = fieldWeight in 601, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=601)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    In this paper, we present a framework for clustering Web search engine queries whose aim is to identify groups of queries used to search for similar information on the Web. The framework is based on a novel term vector model of queries that integrates user selections and the content of selected documents extracted from the logs of a search engine. The query representation obtained allows us to treat query clustering similarly to standard document clustering. We study the application of the clustering framework to two problems: relevance ranking boosting and query recommendation. Finally, we evaluate with experiments the effectiveness of our approach.
    Footnote
    Beitrag eines Themenschwerpunktes "Mining Web resources for enhancing information retrieval"
  2. Liu, Y.; Zhang, M.; Cen, R.; Ru, L.; Ma, S.: Data cleansing for Web information retrieval using query independent features (2007) 0.18
    0.17543377 = product of:
      0.2339117 = sum of:
        0.112658605 = weight(_text_:web in 607) [ClassicSimilarity], result of:
          0.112658605 = score(doc=607,freq=30.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.69824153 = fieldWeight in 607, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=607)
        0.06598687 = weight(_text_:search in 607) [ClassicSimilarity], result of:
          0.06598687 = score(doc=607,freq=8.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.3840117 = fieldWeight in 607, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=607)
        0.05526622 = product of:
          0.11053244 = sum of:
            0.11053244 = weight(_text_:engine in 607) [ClassicSimilarity], result of:
              0.11053244 = score(doc=607,freq=4.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.41792953 = fieldWeight in 607, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=607)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    Understanding what kinds of Web pages are the most useful for Web search engine users is a critical task in Web information retrieval (IR). Most previous works used hyperlink analysis algorithms to solve this problem. However, little research has been focused on query-independent Web data cleansing for Web IR. In this paper, we first provide analysis of the differences between retrieval target pages and ordinary ones based on more than 30 million Web pages obtained from both the Text Retrieval Conference (TREC) and a widely used Chinese search engine, SOGOU (www.sogou.com). We further propose a learning-based data cleansing algorithm for reducing Web pages that are unlikely to be useful for user requests. We found that there exists a large proportion of low-quality Web pages in both the English and the Chinese Web page corpus, and retrieval target pages can be identified using query-independent features and cleansing algorithms. The experimental results showed that our algorithm is effective in reducing a large portion of Web pages with a small loss in retrieval target pages. It makes it possible for Web IR tools to meet a large fraction of users' needs with only a small part of pages on the Web. These results may help Web search engines make better use of their limited storage and computation resources to improve search performance.
    Footnote
    Beitrag eines Themenschwerpunktes "Mining Web resources for enhancing information retrieval"
  3. Search tools (1997) 0.16
    0.16212219 = product of:
      0.21616292 = sum of:
        0.08144732 = weight(_text_:web in 3834) [ClassicSimilarity], result of:
          0.08144732 = score(doc=3834,freq=8.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.50479853 = fieldWeight in 3834, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3834)
        0.08000484 = weight(_text_:search in 3834) [ClassicSimilarity], result of:
          0.08000484 = score(doc=3834,freq=6.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.46558946 = fieldWeight in 3834, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3834)
        0.05471077 = product of:
          0.10942154 = sum of:
            0.10942154 = weight(_text_:engine in 3834) [ClassicSimilarity], result of:
              0.10942154 = score(doc=3834,freq=2.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.41372913 = fieldWeight in 3834, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3834)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    Offers brief accounts of Internet search tools. Covers the Lycos revamp; the new navigation service produced jointly by Excite and Netscape, delivering a language specific, locally relevant Web guide for Japan, Germany, France, the UK and Australia; InfoWatcher, a combination offline browser, search engine and push product from Carvelle Inc., USA; Alexa by Alexa Internet and WBI from IBM which are free and provide users with information on how others have used the Web sites which they are visiting; and Concept Explorer from Knowledge Discovery Systems, Inc., California which performs data mining from the Web, Usenet groups, MEDLINE and the US Patent and Trademark Office patent abstracts
    Theme
    Web-Agenten
  4. Whittle, M.; Eaglestone, B.; Ford, N.; Gillet, V.J.; Madden, A.: Data mining of search engine logs (2007) 0.14
    0.13819468 = product of:
      0.18425956 = sum of:
        0.049364526 = weight(_text_:web in 1330) [ClassicSimilarity], result of:
          0.049364526 = score(doc=1330,freq=4.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.3059541 = fieldWeight in 1330, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=1330)
        0.068575576 = weight(_text_:search in 1330) [ClassicSimilarity], result of:
          0.068575576 = score(doc=1330,freq=6.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.39907667 = fieldWeight in 1330, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=1330)
        0.06631946 = product of:
          0.13263892 = sum of:
            0.13263892 = weight(_text_:engine in 1330) [ClassicSimilarity], result of:
              0.13263892 = score(doc=1330,freq=4.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.5015154 = fieldWeight in 1330, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1330)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    This article reports on the development of a novel method for the analysis of Web logs. The method uses techniques that look for similarities between queries and identify sequences of query transformation. It allows sequences of query transformations to be represented as graphical networks, thereby giving a richer view of search behavior than is possible with the usual sequential descriptions. We also perform a basic analysis to study the correlations between observed transformation codes, with results that appear to show evidence of behavior habits. The method was developed using transaction logs from the Excite search engine to provide a tool for an ongoing research project that is endeavoring to develop a greater understanding of Web-based searching by the general public.
  5. Shi, X.; Yang, C.C.: Mining related queries from Web search engine query logs using an improved association rule mining model (2007) 0.13
    0.13342361 = product of:
      0.17789815 = sum of:
        0.06504348 = weight(_text_:web in 597) [ClassicSimilarity], result of:
          0.06504348 = score(doc=597,freq=10.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.40312994 = fieldWeight in 597, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=597)
        0.07377557 = weight(_text_:search in 597) [ClassicSimilarity], result of:
          0.07377557 = score(doc=597,freq=10.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.4293381 = fieldWeight in 597, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=597)
        0.03907912 = product of:
          0.07815824 = sum of:
            0.07815824 = weight(_text_:engine in 597) [ClassicSimilarity], result of:
              0.07815824 = score(doc=597,freq=2.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.29552078 = fieldWeight in 597, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=597)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    With the overwhelming volume of information, the task of finding relevant information on a given topic on the Web is becoming increasingly difficult. Web search engines hence become one of the most popular solutions available on the Web. However, it has never been easy for novice users to organize and represent their information needs using simple queries. Users have to keep modifying their input queries until they get expected results. Therefore, it is often desirable for search engines to give suggestions on related queries to users. Besides, by identifying those related queries, search engines can potentially perform optimizations on their systems, such as query expansion and file indexing. In this work we propose a method that suggests a list of related queries given an initial input query. The related queries are based in the query log of previously submitted queries by human users, which can be identified using an enhanced model of association rules. Users can utilize the suggested related queries to tune or redirect the search process. Our method not only discovers the related queries, but also ranks them according to the degree of their relatedness. Unlike many other rival techniques, it also performs reasonably well on less frequent input queries.
    Footnote
    Beitrag eines Themenschwerpunktes "Mining Web resources for enhancing information retrieval"
  6. Vaughan, L.; Chen, Y.: Data mining from web search queries : a comparison of Google trends and Baidu index (2015) 0.11
    0.11095908 = product of:
      0.14794545 = sum of:
        0.050382458 = weight(_text_:web in 1605) [ClassicSimilarity], result of:
          0.050382458 = score(doc=1605,freq=6.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.3122631 = fieldWeight in 1605, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1605)
        0.08081709 = weight(_text_:search in 1605) [ClassicSimilarity], result of:
          0.08081709 = score(doc=1605,freq=12.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.47031635 = fieldWeight in 1605, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1605)
        0.01674591 = product of:
          0.03349182 = sum of:
            0.03349182 = weight(_text_:22 in 1605) [ClassicSimilarity], result of:
              0.03349182 = score(doc=1605,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.19345059 = fieldWeight in 1605, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1605)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    Numerous studies have explored the possibility of uncovering information from web search queries but few have examined the factors that affect web query data sources. We conducted a study that investigated this issue by comparing Google Trends and Baidu Index. Data from these two services are based on queries entered by users into Google and Baidu, two of the largest search engines in the world. We first compared the features and functions of the two services based on documents and extensive testing. We then carried out an empirical study that collected query volume data from the two sources. We found that data from both sources could be used to predict the quality of Chinese universities and companies. Despite the differences between the two services in terms of technology, such as differing methods of language processing, the search volume data from the two were highly correlated and combining the two data sources did not improve the predictive power of the data. However, there was a major difference between the two in terms of data availability. Baidu Index was able to provide more search volume data than Google Trends did. Our analysis showed that the disadvantage of Google Trends in this regard was due to Google's smaller user base in China. The implication of this finding goes beyond China. Google's user bases in many countries are smaller than that in China, so the search volume data related to those countries could result in the same issue as that related to China.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.1, S.13-22
  7. Matson, L.D.; Bonski, D.J.: Do digital libraries need librarians? (1997) 0.09
    0.09459321 = product of:
      0.12612428 = sum of:
        0.046541322 = weight(_text_:web in 1737) [ClassicSimilarity], result of:
          0.046541322 = score(doc=1737,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.2884563 = fieldWeight in 1737, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=1737)
        0.052789498 = weight(_text_:search in 1737) [ClassicSimilarity], result of:
          0.052789498 = score(doc=1737,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.30720934 = fieldWeight in 1737, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0625 = fieldNorm(doc=1737)
        0.026793454 = product of:
          0.053586908 = sum of:
            0.053586908 = weight(_text_:22 in 1737) [ClassicSimilarity], result of:
              0.053586908 = score(doc=1737,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.30952093 = fieldWeight in 1737, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1737)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    Defines digital libraries and discusses the effects of new technology on librarians. Examines the different viewpoints of librarians and information technologists on digital libraries. Describes the development of a digital library at the National Drug Intelligence Center, USA, which was carried out in collaboration with information technology experts. The system is based on Web enabled search technology to find information, data visualization and data mining to visualize it and use of SGML as an information standard to store it
    Date
    22.11.1998 18:57:22
  8. Lihui, C.; Lian, C.W.: Using Web structure and summarisation techniques for Web content mining (2005) 0.07
    0.07413054 = product of:
      0.14826109 = sum of:
        0.08227421 = weight(_text_:web in 1046) [ClassicSimilarity], result of:
          0.08227421 = score(doc=1046,freq=16.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.5099235 = fieldWeight in 1046, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1046)
        0.06598687 = weight(_text_:search in 1046) [ClassicSimilarity], result of:
          0.06598687 = score(doc=1046,freq=8.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.3840117 = fieldWeight in 1046, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1046)
      0.5 = coord(2/4)
    
    Abstract
    The dynamic nature and size of the Internet can result in difficulty finding relevant information. Most users typically express their information need via short queries to search engines and they often have to physically sift through the search results based on relevance ranking set by the search engines, making the process of relevance judgement time-consuming. In this paper, we describe a novel representation technique which makes use of the Web structure together with summarisation techniques to better represent knowledge in actual Web Documents. We named the proposed technique as Semantic Virtual Document (SVD). We will discuss how the proposed SVD can be used together with a suitable clustering algorithm to achieve an automatic content-based categorization of similar Web Documents. The auto-categorization facility as well as a "Tree-like" Graphical User Interface (GUI) for post-retrieval document browsing enhances the relevance judgement process for Internet users. Furthermore, we will introduce how our cluster-biased automatic query expansion technique can be used to overcome the ambiguity of short queries typically given by users. We will outline our experimental design to evaluate the effectiveness of the proposed SVD for representation and present a prototype called iSEARCH (Intelligent SEarch And Review of Cluster Hierarchy) for Web content mining. Our results confirm, quantify and extend previous research using Web structure and summarisation techniques, introducing novel techniques for knowledge representation to enhance Web content mining.
  9. Wang, F.L.; Yang, C.C.: Mining Web data for Chinese segmentation (2007) 0.06
    0.061094895 = product of:
      0.12218979 = sum of:
        0.06504348 = weight(_text_:web in 604) [ClassicSimilarity], result of:
          0.06504348 = score(doc=604,freq=10.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.40312994 = fieldWeight in 604, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=604)
        0.057146307 = weight(_text_:search in 604) [ClassicSimilarity], result of:
          0.057146307 = score(doc=604,freq=6.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.33256388 = fieldWeight in 604, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=604)
      0.5 = coord(2/4)
    
    Abstract
    Modern information retrieval systems use keywords within documents as indexing terms for search of relevant documents. As Chinese is an ideographic character-based language, the words in the texts are not delimited by white spaces. Indexing of Chinese documents is impossible without a proper segmentation algorithm. Many Chinese segmentation algorithms have been proposed in the past. Traditional segmentation algorithms cannot operate without a large dictionary or a large corpus of training data. Nowadays, the Web has become the largest corpus that is ideal for Chinese segmentation. Although most search engines have problems in segmenting texts into proper words, they maintain huge databases of documents and frequencies of character sequences in the documents. Their databases are important potential resources for segmentation. In this paper, we propose a segmentation algorithm by mining Web data with the help of search engines. On the other hand, the Romanized pinyin of Chinese language indicates boundaries of words in the text. Our algorithm is the first to utilize the Romanized pinyin to segmentation. It is the first unified segmentation algorithm for the Chinese language from different geographical areas, and it is also domain independent because of the nature of the Web. Experiments have been conducted on the datasets of a recent Chinese segmentation competition. The results show that our algorithm outperforms the traditional algorithms in terms of precision and recall. Moreover, our algorithm can effectively deal with the problems of segmentation ambiguity, new word (unknown word) detection, and stop words.
    Footnote
    Beitrag eines Themenschwerpunktes "Mining Web resources for enhancing information retrieval"
  10. Liu, B.: Web data mining : exploring hyperlinks, contents, and usage data (2011) 0.06
    0.060615685 = product of:
      0.12123137 = sum of:
        0.08390356 = weight(_text_:web in 354) [ClassicSimilarity], result of:
          0.08390356 = score(doc=354,freq=26.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.520022 = fieldWeight in 354, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=354)
        0.03732781 = weight(_text_:search in 354) [ClassicSimilarity], result of:
          0.03732781 = score(doc=354,freq=4.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.21722981 = fieldWeight in 354, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=354)
      0.5 = coord(2/4)
    
    Abstract
    Web mining aims to discover useful information and knowledge from the Web hyperlink structure, page contents, and usage data. Although Web mining uses many conventional data mining techniques, it is not purely an application of traditional data mining due to the semistructured and unstructured nature of the Web data and its heterogeneity. It has also developed many of its own algorithms and techniques. Liu has written a comprehensive text on Web data mining. Key topics of structure mining, content mining, and usage mining are covered both in breadth and in depth. His book brings together all the essential concepts and algorithms from related areas such as data mining, machine learning, and text processing to form an authoritative and coherent text. The book offers a rich blend of theory and practice, addressing seminal research ideas, as well as examining the technology from a practical point of view. It is suitable for students, researchers and practitioners interested in Web mining both as a learning text and a reference book. Lecturers can readily use it for classes on data mining, Web mining, and Web search. Additional teaching materials such as lecture slides, datasets, and implemented algorithms are available online.
    Content
    Inhalt: 1. Introduction 2. Association Rules and Sequential Patterns 3. Supervised Learning 4. Unsupervised Learning 5. Partially Supervised Learning 6. Information Retrieval and Web Search 7. Social Network Analysis 8. Web Crawling 9. Structured Data Extraction: Wrapper Generation 10. Information Integration
    RSWK
    World Wide Web / Data Mining
    Subject
    World Wide Web / Data Mining
  11. Huvila, I.: Mining qualitative data on human information behaviour from the Web (2010) 0.06
    0.05836313 = product of:
      0.11672626 = sum of:
        0.07053544 = weight(_text_:web in 4676) [ClassicSimilarity], result of:
          0.07053544 = score(doc=4676,freq=6.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.43716836 = fieldWeight in 4676, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4676)
        0.046190813 = weight(_text_:search in 4676) [ClassicSimilarity], result of:
          0.046190813 = score(doc=4676,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.2688082 = fieldWeight in 4676, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4676)
      0.5 = coord(2/4)
    
    Abstract
    This paper discusses an approach of collecting qualitative data on human information behaviour that is based on mining web data using search engines. The approach is technically the same that has been used for some time in webometric research to make statistical inferences on web data, but the present paper shows how the same tools and data collecting methods can be used to gather data for qualitative data analysis on human information behaviour.
  12. Chakrabarti, S.: Mining the Web : discovering knowledge from hypertext data (2003) 0.05
    0.051787402 = product of:
      0.103574805 = sum of:
        0.07718006 = weight(_text_:web in 2222) [ClassicSimilarity], result of:
          0.07718006 = score(doc=2222,freq=22.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.47835067 = fieldWeight in 2222, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=2222)
        0.026394749 = weight(_text_:search in 2222) [ClassicSimilarity], result of:
          0.026394749 = score(doc=2222,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.15360467 = fieldWeight in 2222, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=2222)
      0.5 = coord(2/4)
    
    Footnote
    Rez. in: JASIST 55(2004) no.3, S.275-276 (C. Chen): "This is a book about finding significant statistical patterns on the Web - in particular, patterns that are associated with hypertext documents, topics, hyperlinks, and queries. The term pattern in this book refers to dependencies among such items. On the one hand, the Web contains useful information an just about every topic under the sun. On the other hand, just like searching for a needle in a haystack, one would need powerful tools to locate useful information an the vast land of the Web. Soumen Chakrabarti's book focuses an a wide range of techniques for machine learning and data mining an the Web. The goal of the book is to provide both the technical Background and tools and tricks of the trade of Web content mining. Much of the technical content reflects the state of the art between 1995 and 2002. The targeted audience is researchers and innovative developers in this area, as well as newcomers who intend to enter this area. The book begins with an introduction chapter. The introduction chapter explains fundamental concepts such as crawling and indexing as well as clustering and classification. The remaining eight chapters are organized into three parts: i) infrastructure, ii) learning and iii) applications.
    Part I, Infrastructure, has two chapters: Chapter 2 on crawling the Web and Chapter 3 an Web search and information retrieval. The second part of the book, containing chapters 4, 5, and 6, is the centerpiece. This part specifically focuses an machine learning in the context of hypertext. Part III is a collection of applications that utilize the techniques described in earlier chapters. Chapter 7 is an social network analysis. Chapter 8 is an resource discovery. Chapter 9 is an the future of Web mining. Overall, this is a valuable reference book for researchers and developers in the field of Web mining. It should be particularly useful for those who would like to design and probably code their own Computer programs out of the equations and pseudocodes an most of the pages. For a student, the most valuable feature of the book is perhaps the formal and consistent treatments of concepts across the board. For what is behind and beyond the technical details, one has to either dig deeper into the bibliographic notes at the end of each chapter, or resort to more in-depth analysis of relevant subjects in the literature. lf you are looking for successful stories about Web mining or hard-way-learned lessons of failures, this is not the book."
  13. Cohen, D.J.: From Babel to knowledge : data mining large digital collections (2006) 0.03
    0.034493856 = product of:
      0.06898771 = sum of:
        0.023270661 = weight(_text_:web in 1178) [ClassicSimilarity], result of:
          0.023270661 = score(doc=1178,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.14422815 = fieldWeight in 1178, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=1178)
        0.04571705 = weight(_text_:search in 1178) [ClassicSimilarity], result of:
          0.04571705 = score(doc=1178,freq=6.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.2660511 = fieldWeight in 1178, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=1178)
      0.5 = coord(2/4)
    
    Abstract
    In Jorge Luis Borges's curious short story The Library of Babel, the narrator describes an endless collection of books stored from floor to ceiling in a labyrinth of countless hexagonal rooms. The pages of the library's books seem to contain random sequences of letters and spaces; occasionally a few intelligible words emerge in the sea of paper and ink. Nevertheless, readers diligently, and exasperatingly, scan the shelves for coherent passages. The narrator himself has wandered numerous rooms in search of enlightenment, but with resignation he simply awaits his death and burial - which Borges explains (with signature dark humor) consists of being tossed unceremoniously over the library's banister. Borges's nightmare, of course, is a cursed vision of the research methods of disciplines such as literature, history, and philosophy, where the careful reading of books, one after the other, is supposed to lead inexorably to knowledge and understanding. Computer scientists would approach Borges's library far differently. Employing the information theory that forms the basis for search engines and other computerized techniques for assessing in one fell swoop large masses of documents, they would quickly realize the collection's incoherence though sampling and statistical methods - and wisely start looking for the library's exit. These computational methods, which allow us to find patterns, determine relationships, categorize documents, and extract information from massive corpuses, will form the basis for new tools for research in the humanities and other disciplines in the coming decade. For the past three years I have been experimenting with how to provide such end-user tools - that is, tools that harness the power of vast electronic collections while hiding much of their complicated technical plumbing. In particular, I have made extensive use of the application programming interfaces (APIs) the leading search engines provide for programmers to query their databases directly (from server to server without using their web interfaces). In addition, I have explored how one might extract information from large digital collections, from the well-curated lexicographic database WordNet to the democratic (and poorly curated) online reference work Wikipedia. While processing these digital corpuses is currently an imperfect science, even now useful tools can be created by combining various collections and methods for searching and analyzing them. And more importantly, these nascent services suggest a future in which information can be gleaned from, and sense can be made out of, even imperfect digital libraries of enormous scale. A brief examination of two approaches to data mining large digital collections hints at this future, while also providing some lessons about how to get there.
  14. Lackes, R.; Tillmanns, C.: Data Mining für die Unternehmenspraxis : Entscheidungshilfen und Fallstudien mit führenden Softwarelösungen (2006) 0.03
    0.033495016 = product of:
      0.13398007 = sum of:
        0.13398007 = sum of:
          0.09378988 = weight(_text_:engine in 1383) [ClassicSimilarity], result of:
            0.09378988 = score(doc=1383,freq=2.0), product of:
              0.26447627 = queryWeight, product of:
                5.349498 = idf(docFreq=570, maxDocs=44218)
                0.049439456 = queryNorm
              0.35462496 = fieldWeight in 1383, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.349498 = idf(docFreq=570, maxDocs=44218)
                0.046875 = fieldNorm(doc=1383)
          0.04019018 = weight(_text_:22 in 1383) [ClassicSimilarity], result of:
            0.04019018 = score(doc=1383,freq=2.0), product of:
              0.17312855 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.049439456 = queryNorm
              0.23214069 = fieldWeight in 1383, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=1383)
      0.25 = coord(1/4)
    
    Abstract
    Das Buch richtet sich an Praktiker in Unternehmen, die sich mit der Analyse von großen Datenbeständen beschäftigen. Nach einem kurzen Theorieteil werden vier Fallstudien aus dem Customer Relationship Management eines Versandhändlers bearbeitet. Dabei wurden acht führende Softwarelösungen verwendet: der Intelligent Miner von IBM, der Enterprise Miner von SAS, Clementine von SPSS, Knowledge Studio von Angoss, der Delta Miner von Bissantz, der Business Miner von Business Object und die Data Engine von MIT. Im Rahmen der Fallstudien werden die Stärken und Schwächen der einzelnen Lösungen deutlich, und die methodisch-korrekte Vorgehensweise beim Data Mining wird aufgezeigt. Beides liefert wertvolle Entscheidungshilfen für die Auswahl von Standardsoftware zum Data Mining und für die praktische Datenanalyse.
    Date
    22. 3.2008 14:46:06
  15. Chen, C.-C.; Chen, A.-P.: Using data mining technology to provide a recommendation service in the digital library (2007) 0.03
    0.03104088 = product of:
      0.06208176 = sum of:
        0.029088326 = weight(_text_:web in 2533) [ClassicSimilarity], result of:
          0.029088326 = score(doc=2533,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.18028519 = fieldWeight in 2533, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2533)
        0.032993436 = weight(_text_:search in 2533) [ClassicSimilarity], result of:
          0.032993436 = score(doc=2533,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.19200584 = fieldWeight in 2533, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2533)
      0.5 = coord(2/4)
    
    Abstract
    Purpose - Since library storage has been increasing day by day, it is difficult for readers to find the books which interest them as well as representative booklists. How to utilize meaningful information effectively to improve the service quality of the digital library appears to be very important. The purpose of this paper is to provide a recommendation system architecture to promote digital library services in electronic libraries. Design/methodology/approach - In the proposed architecture, a two-phase data mining process used by association rule and clustering methods is designed to generate a recommendation system. The process considers not only the relationship of a cluster of users but also the associations among the information accessed. Findings - The process considered not only the relationship of a cluster of users but also the associations among the information accessed. With the advanced filter, the recommendation supported by the proposed system architecture would be closely served to meet users' needs. Originality/value - This paper not only constructs a recommendation service for readers to search books from the web but takes the initiative in finding the most suitable books for readers as well. Furthermore, library managers are expected to purchase core and hot books from a limited budget to maintain and satisfy the requirements of readers along with promoting digital library services.
  16. Chen, H.; Chau, M.: Web mining : machine learning for Web applications (2003) 0.03
    0.02759561 = product of:
      0.11038244 = sum of:
        0.11038244 = weight(_text_:web in 4242) [ClassicSimilarity], result of:
          0.11038244 = score(doc=4242,freq=20.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.6841342 = fieldWeight in 4242, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4242)
      0.25 = coord(1/4)
    
    Abstract
    With more than two billion pages created by millions of Web page authors and organizations, the World Wide Web is a tremendously rich knowledge base. The knowledge comes not only from the content of the pages themselves, but also from the unique characteristics of the Web, such as its hyperlink structure and its diversity of content and languages. Analysis of these characteristics often reveals interesting patterns and new knowledge. Such knowledge can be used to improve users' efficiency and effectiveness in searching for information an the Web, and also for applications unrelated to the Web, such as support for decision making or business management. The Web's size and its unstructured and dynamic content, as well as its multilingual nature, make the extraction of useful knowledge a challenging research problem. Furthermore, the Web generates a large amount of data in other formats that contain valuable information. For example, Web server logs' information about user access patterns can be used for information personalization or improving Web page design.
  17. Baumgartner, R.: Methoden und Werkzeuge zur Webdatenextraktion (2006) 0.03
    0.026936168 = product of:
      0.10774467 = sum of:
        0.10774467 = weight(_text_:web in 5808) [ClassicSimilarity], result of:
          0.10774467 = score(doc=5808,freq=14.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.6677857 = fieldWeight in 5808, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5808)
      0.25 = coord(1/4)
    
    Abstract
    Das World Wide Web kann als die größte uns bekannte "Datenbank" angesehen werden. Leider ist das heutige Web großteils auf die Präsentation für menschliche Benutzerinnen ausgelegt und besteht aus sehr heterogenen Datenbeständen. Überdies fehlen im Web die Möglichkeiten Informationen strukturiert und aus verschiedenen Quellen aggregiert abzufragen. Das heutige Web ist daher für die automatische maschinelle Verarbeitung nicht geeignet. Um Webdaten dennoch effektiv zu nutzen, wurden Sprachen, Methoden und Werkzeuge zur Extraktion und Aggregation dieser Daten entwickelt. Dieser Artikel gibt einen Überblick und eine Kategorisierung von verschiedenen Ansätzen zur Datenextraktion aus dem Web. Einige Beispielszenarien im B2B Datenaustausch, im Business Intelligence Bereich und insbesondere die Generierung von Daten für Semantic Web Ontologien illustrieren die effektive Nutzung dieser Technologien.
    Source
    Semantic Web: Wege zur vernetzten Wissensgesellschaft. Hrsg.: T. Pellegrini, u. A. Blumauer
  18. Lam, W.; Yang, C.C.; Menczer, F.: Introduction to the special topic section on mining Web resources for enhancing information retrieval (2007) 0.03
    0.026936168 = product of:
      0.10774467 = sum of:
        0.10774467 = weight(_text_:web in 600) [ClassicSimilarity], result of:
          0.10774467 = score(doc=600,freq=14.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.6677857 = fieldWeight in 600, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=600)
      0.25 = coord(1/4)
    
    Abstract
    The amount of information on the Web has been expanding at an enormous pace. There are a variety of Web documents in different genres, such as news, reports, reviews. Traditionally, the information displayed on Web sites has been static. Recently, there are many Web sites offering content that is dynamically generated and frequently updated. It is also common for Web sites to contain information in different languages since many countries adopt more than one language. Moreover, content may exist in multimedia formats including text, images, video, and audio.
    Footnote
    Einführung in einen Themenschwerpunkt "Mining Web resources for enhancing information retrieval"
  19. Derek Doran, D.; Gokhale, S.S.: ¬A classification framework for web robots (2012) 0.02
    0.023270661 = product of:
      0.093082644 = sum of:
        0.093082644 = weight(_text_:web in 505) [ClassicSimilarity], result of:
          0.093082644 = score(doc=505,freq=8.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.5769126 = fieldWeight in 505, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=505)
      0.25 = coord(1/4)
    
    Abstract
    The behavior of modern web robots varies widely when they crawl for different purposes. In this article, we present a framework to classify these web robots from two orthogonal perspectives, namely, their functionality and the types of resources they consume. Applying the classification framework to a year-long access log from the UConn SoE web server, we present trends that point to significant differences in their crawling behavior.
  20. Fenstermacher, K.D.; Ginsburg, M.: Client-side monitoring for Web mining (2003) 0.02
    0.023088144 = product of:
      0.09235258 = sum of:
        0.09235258 = weight(_text_:web in 1611) [ClassicSimilarity], result of:
          0.09235258 = score(doc=1611,freq=14.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.57238775 = fieldWeight in 1611, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=1611)
      0.25 = coord(1/4)
    
    Abstract
    "Garbage in, garbage out" is a well-known phrase in computer analysis, and one that comes to mind when mining Web data to draw conclusions about Web users. The challenge is that data analysts wish to infer patterns of client-side behavior from server-side data. However, because only a fraction of the user's actions ever reaches the Web server, analysts must rely an incomplete data. In this paper, we propose a client-side monitoring system that is unobtrusive and supports flexible data collection. Moreover, the proposed framework encompasses client-side applications beyond the Web browser. Expanding monitoring beyond the browser to incorporate standard office productivity tools enables analysts to derive a much richer and more accurate picture of user behavior an the Web.
    Footnote
    Teil eines Themenheftes: "Web retrieval and mining: A machine learning perspective"

Languages

  • e 51
  • d 13

Types