Search (18 results, page 1 of 1)

  • × year_i:[2010 TO 2020}
  • × theme_ss:"Retrievalalgorithmen"
  1. Soulier, L.; Jabeur, L.B.; Tamine, L.; Bahsoun, W.: On ranking relevant entities in heterogeneous networks using a language-based model (2013) 0.00
    0.004296265 = product of:
      0.01718506 = sum of:
        0.010225092 = product of:
          0.030675275 = sum of:
            0.030675275 = weight(_text_:problem in 664) [ClassicSimilarity], result of:
              0.030675275 = score(doc=664,freq=2.0), product of:
                0.13082431 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.030822188 = queryNorm
                0.23447686 = fieldWeight in 664, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=664)
          0.33333334 = coord(1/3)
        0.0069599687 = product of:
          0.020879906 = sum of:
            0.020879906 = weight(_text_:22 in 664) [ClassicSimilarity], result of:
              0.020879906 = score(doc=664,freq=2.0), product of:
                0.10793405 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.030822188 = queryNorm
                0.19345059 = fieldWeight in 664, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=664)
          0.33333334 = coord(1/3)
      0.25 = coord(2/8)
    
    Abstract
    A new challenge, accessing multiple relevant entities, arises from the availability of linked heterogeneous data. In this article, we address more specifically the problem of accessing relevant entities, such as publications and authors within a bibliographic network, given an information need. We propose a novel algorithm, called BibRank, that estimates a joint relevance of documents and authors within a bibliographic network. This model ranks each type of entity using a score propagation algorithm with respect to the query topic and the structure of the underlying bi-type information entity network. Evidence sources, namely content-based and network-based scores, are both used to estimate the topical similarity between connected entities. For this purpose, authorship relationships are analyzed through a language model-based score on the one hand and on the other hand, non topically related entities of the same type are detected through marginal citations. The article reports the results of experiments using the Bibrank algorithm for an information retrieval task. The CiteSeerX bibliographic data set forms the basis for the topical query automatic generation and evaluation. We show that a statistically significant improvement over closely related ranking models is achieved.
    Date
    22. 3.2013 19:34:49
  2. Ayadi, H.; Torjmen-Khemakhem, M.; Daoud, M.; Xiangji Huang, J.; Ben Jemaa, M.: MF-Re-Rank : a modality feature-based re-ranking model for medical image retrieval (2018) 0.00
    0.0034496475 = product of:
      0.01379859 = sum of:
        0.008180073 = product of:
          0.02454022 = sum of:
            0.02454022 = weight(_text_:problem in 4459) [ClassicSimilarity], result of:
              0.02454022 = score(doc=4459,freq=2.0), product of:
                0.13082431 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.030822188 = queryNorm
                0.1875815 = fieldWeight in 4459, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4459)
          0.33333334 = coord(1/3)
        0.0056185164 = product of:
          0.016855549 = sum of:
            0.016855549 = weight(_text_:29 in 4459) [ClassicSimilarity], result of:
              0.016855549 = score(doc=4459,freq=2.0), product of:
                0.108422816 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.030822188 = queryNorm
                0.15546128 = fieldWeight in 4459, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4459)
          0.33333334 = coord(1/3)
      0.25 = coord(2/8)
    
    Abstract
    One of the main challenges in medical image retrieval is the increasing volume of image data, which render it difficult for domain experts to find relevant information from large data sets. Effective and efficient medical image retrieval systems are required to better manage medical image information. Text-based image retrieval (TBIR) was very successful in retrieving images with textual descriptions. Several TBIR approaches rely on models based on bag-of-words approaches, in which the image retrieval problem turns into one of standard text-based information retrieval; where the meanings and values of specific medical entities in the text and metadata are ignored in the image representation and retrieval process. However, we believe that TBIR should extract specific medical entities and terms and then exploit these elements to achieve better image retrieval results. Therefore, we propose a novel reranking method based on medical-image-dependent features. These features are manually selected by a medical expert from imaging modalities and medical terminology. First, we represent queries and images using only medical-image-dependent features such as image modality and image scale. Second, we exploit the defined features in a new reranking method for medical image retrieval. Our motivation is the large influence of image modality in medical image retrieval and its impact on image-relevance scores. To evaluate our approach, we performed a series of experiments on the medical ImageCLEF data sets from 2009 to 2013. The BM25 model, a language model, and an image-relevance feedback model are used as baselines to evaluate our approach. The experimental results show that compared to the BM25 model, the proposed model significantly enhances image retrieval performance. We also compared our approach with other state-of-the-art approaches and show that our approach performs comparably to those of the top three runs in the official ImageCLEF competition.
    Date
    29. 9.2018 11:43:31
  3. Wei, F.; Li, W.; Liu, S.: iRANK: a rank-learn-combine framework for unsupervised ensemble ranking (2010) 0.00
    0.0018075579 = product of:
      0.014460463 = sum of:
        0.014460463 = product of:
          0.04338139 = sum of:
            0.04338139 = weight(_text_:problem in 3472) [ClassicSimilarity], result of:
              0.04338139 = score(doc=3472,freq=4.0), product of:
                0.13082431 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.030822188 = queryNorm
                0.33160037 = fieldWeight in 3472, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3472)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Abstract
    The authors address the problem of unsupervised ensemble ranking. Traditional approaches either combine multiple ranking criteria into a unified representation to obtain an overall ranking score or to utilize certain rank fusion or aggregation techniques to combine the ranking results. Beyond the aforementioned combine-then-rank and rank-then-combine approaches, the authors propose a novel rank-learn-combine ranking framework, called Interactive Ranking (iRANK), which allows two base rankers to teach each other before combination during the ranking process by providing their own ranking results as feedback to the others to boost the ranking performance. This mutual ranking refinement process continues until the two base rankers cannot learn from each other any more. The overall performance is improved by the enhancement of the base rankers through the mutual learning mechanism. The authors further design two ranking refinement strategies to efficiently and effectively use the feedback based on reasonable assumptions and rational analysis. Although iRANK is applicable to many applications, as a case study, they apply this framework to the sentence ranking problem in query-focused summarization and evaluate its effectiveness on the DUC 2005 and 2006 data sets. The results are encouraging with consistent and promising improvements.
  4. Ozdemiray, A.M.; Altingovde, I.S.: Explicit search result diversification using score and rank aggregation methods (2015) 0.00
    0.0018075579 = product of:
      0.014460463 = sum of:
        0.014460463 = product of:
          0.04338139 = sum of:
            0.04338139 = weight(_text_:problem in 1856) [ClassicSimilarity], result of:
              0.04338139 = score(doc=1856,freq=4.0), product of:
                0.13082431 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.030822188 = queryNorm
                0.33160037 = fieldWeight in 1856, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1856)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Abstract
    Search result diversification is one of the key techniques to cope with the ambiguous and underspecified information needs of web users. In the last few years, strategies that are based on the explicit knowledge of query aspects emerged as highly effective ways of diversifying search results. Our contributions in this article are two-fold. First, we extensively evaluate the performance of a state-of-the-art explicit diversification strategy and pin-point its potential weaknesses. We propose basic yet novel optimizations to remedy these weaknesses and boost the performance of this algorithm. As a second contribution, inspired by the success of the current diversification strategies that exploit the relevance of the candidate documents to individual query aspects, we cast the diversification problem into the problem of ranking aggregation. To this end, we propose to materialize the re-rankings of the candidate documents for each query aspect and then merge these rankings by adapting the score(-based) and rank(-based) aggregation methods. Our extensive experimental evaluations show that certain ranking aggregation methods are superior to existing explicit diversification strategies in terms of diversification effectiveness. Furthermore, these ranking aggregation methods have lower computational complexity than the state-of-the-art diversification strategies.
  5. Liu, X.; Zheng, W.; Fang, H.: ¬An exploration of ranking models and feedback method for related entity finding (2013) 0.00
    0.0018075579 = product of:
      0.014460463 = sum of:
        0.014460463 = product of:
          0.04338139 = sum of:
            0.04338139 = weight(_text_:problem in 2714) [ClassicSimilarity], result of:
              0.04338139 = score(doc=2714,freq=4.0), product of:
                0.13082431 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.030822188 = queryNorm
                0.33160037 = fieldWeight in 2714, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2714)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Abstract
    Most existing search engines focus on document retrieval. However, information needs are certainly not limited to finding relevant documents. Instead, a user may want to find relevant entities such as persons and organizations. In this paper, we study the problem of related entity finding. Our goal is to rank entities based on their relevance to a structured query, which specifies an input entity, the type of related entities and the relation between the input and related entities. We first discuss a general probabilistic framework, derive six possible retrieval models to rank the related entities, and then compare these models both analytically and empirically. To further improve performance, we study the problem of feedback in the context of related entity finding. Specifically, we propose a mixture model based feedback method that can utilize the pseudo feedback entities to estimate an enriched model for the relation between the input and related entities. Experimental results over two standard TREC collections show that the derived relation generation model combined with a relation feedback method performs better than other models.
  6. Efron, M.; Winget, M.: Query polyrepresentation for ranking retrieval systems without relevance judgments (2010) 0.00
    0.0015337638 = product of:
      0.012270111 = sum of:
        0.012270111 = product of:
          0.03681033 = sum of:
            0.03681033 = weight(_text_:problem in 3469) [ClassicSimilarity], result of:
              0.03681033 = score(doc=3469,freq=2.0), product of:
                0.13082431 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.030822188 = queryNorm
                0.28137225 = fieldWeight in 3469, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3469)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Abstract
    Ranking information retrieval (IR) systems with respect to their effectiveness is a crucial operation during IR evaluation, as well as during data fusion. This article offers a novel method of approaching the system-ranking problem, based on the widely studied idea of polyrepresentation. The principle of polyrepresentation suggests that a single information need can be represented by many query articulations-what we call query aspects. By skimming the top k (where k is small) documents retrieved by a single system for multiple query aspects, we collect a set of documents that are likely to be relevant to a given test topic. Labeling these skimmed documents as putatively relevant lets us build pseudorelevance judgments without undue human intervention. We report experiments where using these pseudorelevance judgments delivers a rank ordering of IR systems that correlates highly with rankings based on human relevance judgments.
  7. Moura, E.S. de; Fernandes, D.; Ribeiro-Neto, B.; Silva, A.S. da; Gonçalves, M.A.: Using structural information to improve search in Web collections (2010) 0.00
    0.0015337638 = product of:
      0.012270111 = sum of:
        0.012270111 = product of:
          0.03681033 = sum of:
            0.03681033 = weight(_text_:problem in 4119) [ClassicSimilarity], result of:
              0.03681033 = score(doc=4119,freq=2.0), product of:
                0.13082431 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.030822188 = queryNorm
                0.28137225 = fieldWeight in 4119, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4119)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Abstract
    In this work, we investigate the problem of using the block structure of Web pages to improve ranking results. Starting with basic intuitions provided by the concepts of term frequency (TF) and inverse document frequency (IDF), we propose nine block-weight functions to distinguish the impact of term occurrences inside page blocks, instead of inside whole pages. These are then used to compute a modified BM25 ranking function. Using four distinct Web collections, we ran extensive experiments to compare our block-weight ranking formulas with two other baselines: (a) a BM25 ranking applied to full pages, and (b) a BM25 ranking that takes into account best blocks. Our methods suggest that our block-weighting ranking method is superior to all baselines across all collections we used and that average gain in precision figures from 5 to 20% are generated.
  8. Li, H.; Wu, H.; Li, D.; Lin, S.; Su, Z.; Luo, X.: PSI: A probabilistic semantic interpretable framework for fine-grained image ranking (2018) 0.00
    0.0015337638 = product of:
      0.012270111 = sum of:
        0.012270111 = product of:
          0.03681033 = sum of:
            0.03681033 = weight(_text_:problem in 4577) [ClassicSimilarity], result of:
              0.03681033 = score(doc=4577,freq=2.0), product of:
                0.13082431 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.030822188 = queryNorm
                0.28137225 = fieldWeight in 4577, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4577)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Abstract
    Image Ranking is one of the key problems in information science research area. However, most current methods focus on increasing the performance, leaving the semantic gap problem, which refers to the learned ranking models are hard to be understood, remaining intact. Therefore, in this article, we aim at learning an interpretable ranking model to tackle the semantic gap in fine-grained image ranking. We propose to combine attribute-based representation and online passive-aggressive (PA) learning based ranking models to achieve this goal. Besides, considering the highly localized instances in fine-grained image ranking, we introduce a supervised constrained clustering method to gather class-balanced training instances for local PA-based models, and incorporate the learned local models into a unified probabilistic framework. Extensive experiments on the benchmark demonstrate that the proposed framework outperforms state-of-the-art methods in terms of accuracy and speed.
  9. Maylein, L.; Langenstein, A.: Neues vom Relevanz-Ranking im HEIDI-Katalog der Universitätsbibliothek Heidelberg : Perspektiven für bibliothekarische Dienstleistungen (2013) 0.00
    0.0014046291 = product of:
      0.011237033 = sum of:
        0.011237033 = product of:
          0.033711098 = sum of:
            0.033711098 = weight(_text_:29 in 775) [ClassicSimilarity], result of:
              0.033711098 = score(doc=775,freq=2.0), product of:
                0.108422816 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.030822188 = queryNorm
                0.31092256 = fieldWeight in 775, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=775)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Date
    29. 6.2013 18:06:23
  10. Bornmann, L.; Mutz, R.: From P100 to P100' : a new citation-rank approach (2014) 0.00
    0.0013919937 = product of:
      0.01113595 = sum of:
        0.01113595 = product of:
          0.03340785 = sum of:
            0.03340785 = weight(_text_:22 in 1431) [ClassicSimilarity], result of:
              0.03340785 = score(doc=1431,freq=2.0), product of:
                0.10793405 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.030822188 = queryNorm
                0.30952093 = fieldWeight in 1431, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1431)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Date
    22. 8.2014 17:05:18
  11. Tober, M.; Hennig, L.; Furch, D.: SEO Ranking-Faktoren und Rang-Korrelationen 2014 : Google Deutschland (2014) 0.00
    0.0013919937 = product of:
      0.01113595 = sum of:
        0.01113595 = product of:
          0.03340785 = sum of:
            0.03340785 = weight(_text_:22 in 1484) [ClassicSimilarity], result of:
              0.03340785 = score(doc=1484,freq=2.0), product of:
                0.10793405 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.030822188 = queryNorm
                0.30952093 = fieldWeight in 1484, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1484)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Date
    13. 9.2014 14:45:22
  12. Jiang, X.; Sun, X.; Yang, Z.; Zhuge, H.; Lapshinova-Koltunski, E.; Yao, J.: Exploiting heterogeneous scientific literature networks to combat ranking bias : evidence from the computational linguistics area (2016) 0.00
    0.0012781365 = product of:
      0.010225092 = sum of:
        0.010225092 = product of:
          0.030675275 = sum of:
            0.030675275 = weight(_text_:problem in 3017) [ClassicSimilarity], result of:
              0.030675275 = score(doc=3017,freq=2.0), product of:
                0.13082431 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.030822188 = queryNorm
                0.23447686 = fieldWeight in 3017, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3017)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Abstract
    It is important to help researchers find valuable papers from a large literature collection. To this end, many graph-based ranking algorithms have been proposed. However, most of these algorithms suffer from the problem of ranking bias. Ranking bias hurts the usefulness of a ranking algorithm because it returns a ranking list with an undesirable time distribution. This paper is a focused study on how to alleviate ranking bias by leveraging the heterogeneous network structure of the literature collection. We propose a new graph-based ranking algorithm, MutualRank, that integrates mutual reinforcement relationships among networks of papers, researchers, and venues to achieve a more synthetic, accurate, and less-biased ranking than previous methods. MutualRank provides a unified model that involves both intra- and inter-network information for ranking papers, researchers, and venues simultaneously. We use the ACL Anthology Network as the benchmark data set and construct the gold standard from computer linguistics course websites of well-known universities and two well-known textbooks. The experimental results show that MutualRank greatly outperforms the state-of-the-art competitors, including PageRank, HITS, CoRank, Future Rank, and P-Rank, in ranking papers in both improving ranking effectiveness and alleviating ranking bias. Rankings of researchers and venues by MutualRank are also quite reasonable.
  13. Ravana, S.D.; Rajagopal, P.; Balakrishnan, V.: Ranking retrieval systems using pseudo relevance judgments (2015) 0.00
    0.0012303602 = product of:
      0.009842882 = sum of:
        0.009842882 = product of:
          0.029528644 = sum of:
            0.029528644 = weight(_text_:22 in 2591) [ClassicSimilarity], result of:
              0.029528644 = score(doc=2591,freq=4.0), product of:
                0.10793405 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.030822188 = queryNorm
                0.27358043 = fieldWeight in 2591, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2591)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Date
    20. 1.2015 18:30:22
    18. 9.2018 18:22:56
  14. Mayr, P.: Bradfordizing als Re-Ranking-Ansatz in Literaturinformationssystemen (2011) 0.00
    0.0010534719 = product of:
      0.008427775 = sum of:
        0.008427775 = product of:
          0.025283325 = sum of:
            0.025283325 = weight(_text_:29 in 4292) [ClassicSimilarity], result of:
              0.025283325 = score(doc=4292,freq=2.0), product of:
                0.108422816 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.030822188 = queryNorm
                0.23319192 = fieldWeight in 4292, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4292)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Date
    9. 2.2011 17:47:29
  15. Costa Carvalho, A. da; Rossi, C.; Moura, E.S. de; Silva, A.S. da; Fernandes, D.: LePrEF: Learn to precompute evidence fusion for efficient query evaluation (2012) 0.00
    8.7789324E-4 = product of:
      0.007023146 = sum of:
        0.007023146 = product of:
          0.021069437 = sum of:
            0.021069437 = weight(_text_:29 in 278) [ClassicSimilarity], result of:
              0.021069437 = score(doc=278,freq=2.0), product of:
                0.108422816 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.030822188 = queryNorm
                0.19432661 = fieldWeight in 278, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=278)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Date
    24. 6.2012 14:29:10
  16. Silva, R.M.; Gonçalves, M.A.; Veloso, A.: ¬A Two-stage active learning method for learning to rank (2014) 0.00
    8.7789324E-4 = product of:
      0.007023146 = sum of:
        0.007023146 = product of:
          0.021069437 = sum of:
            0.021069437 = weight(_text_:29 in 1184) [ClassicSimilarity], result of:
              0.021069437 = score(doc=1184,freq=2.0), product of:
                0.108422816 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.030822188 = queryNorm
                0.19432661 = fieldWeight in 1184, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1184)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Date
    26. 1.2014 20:29:57
  17. Zhu, J.; Han, L.; Gou, Z.; Yuan, X.: ¬A fuzzy clustering-based denoising model for evaluating uncertainty in collaborative filtering recommender systems (2018) 0.00
    8.7789324E-4 = product of:
      0.007023146 = sum of:
        0.007023146 = product of:
          0.021069437 = sum of:
            0.021069437 = weight(_text_:29 in 4460) [ClassicSimilarity], result of:
              0.021069437 = score(doc=4460,freq=2.0), product of:
                0.108422816 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.030822188 = queryNorm
                0.19432661 = fieldWeight in 4460, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4460)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Date
    29. 9.2018 12:32:59
  18. Baloh, P.; Desouza, K.C.; Hackney, R.: Contextualizing organizational interventions of knowledge management systems : a design science perspectiveA domain analysis (2012) 0.00
    8.699961E-4 = product of:
      0.0069599687 = sum of:
        0.0069599687 = product of:
          0.020879906 = sum of:
            0.020879906 = weight(_text_:22 in 241) [ClassicSimilarity], result of:
              0.020879906 = score(doc=241,freq=2.0), product of:
                0.10793405 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.030822188 = queryNorm
                0.19345059 = fieldWeight in 241, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=241)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Date
    11. 6.2012 14:22:34