Search (285 results, page 1 of 15)

  • × type_ss:"x"
  1. Verwer, K.: Freiheit und Verantwortung bei Hans Jonas (2011) 0.52
    0.5210413 = product of:
      1.215763 = sum of:
        0.046760116 = product of:
          0.23380058 = sum of:
            0.23380058 = weight(_text_:3a in 973) [ClassicSimilarity], result of:
              0.23380058 = score(doc=973,freq=2.0), product of:
                0.20800096 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.02453417 = queryNorm
                1.1240361 = fieldWeight in 973, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.09375 = fieldNorm(doc=973)
          0.2 = coord(1/5)
        0.23380058 = weight(_text_:2f in 973) [ClassicSimilarity], result of:
          0.23380058 = score(doc=973,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            1.1240361 = fieldWeight in 973, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.09375 = fieldNorm(doc=973)
        0.23380058 = weight(_text_:2f in 973) [ClassicSimilarity], result of:
          0.23380058 = score(doc=973,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            1.1240361 = fieldWeight in 973, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.09375 = fieldNorm(doc=973)
        0.23380058 = weight(_text_:2f in 973) [ClassicSimilarity], result of:
          0.23380058 = score(doc=973,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            1.1240361 = fieldWeight in 973, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.09375 = fieldNorm(doc=973)
        0.23380058 = weight(_text_:2f in 973) [ClassicSimilarity], result of:
          0.23380058 = score(doc=973,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            1.1240361 = fieldWeight in 973, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.09375 = fieldNorm(doc=973)
        0.23380058 = weight(_text_:2f in 973) [ClassicSimilarity], result of:
          0.23380058 = score(doc=973,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            1.1240361 = fieldWeight in 973, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.09375 = fieldNorm(doc=973)
      0.42857143 = coord(6/14)
    
    Content
    Vgl.: http%3A%2F%2Fcreativechoice.org%2Fdoc%2FHansJonas.pdf&usg=AOvVaw1TM3teaYKgABL5H9yoIifA&opi=89978449.
  2. Huo, W.: Automatic multi-word term extraction and its application to Web-page summarization (2012) 0.41
    0.4053219 = product of:
      0.63050073 = sum of:
        0.016133383 = weight(_text_:system in 563) [ClassicSimilarity], result of:
          0.016133383 = score(doc=563,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.20878783 = fieldWeight in 563, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=563)
        0.11690029 = weight(_text_:2f in 563) [ClassicSimilarity], result of:
          0.11690029 = score(doc=563,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.56201804 = fieldWeight in 563, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=563)
        0.11690029 = weight(_text_:2f in 563) [ClassicSimilarity], result of:
          0.11690029 = score(doc=563,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.56201804 = fieldWeight in 563, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=563)
        0.11690029 = weight(_text_:2f in 563) [ClassicSimilarity], result of:
          0.11690029 = score(doc=563,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.56201804 = fieldWeight in 563, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=563)
        0.11690029 = weight(_text_:2f in 563) [ClassicSimilarity], result of:
          0.11690029 = score(doc=563,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.56201804 = fieldWeight in 563, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=563)
        0.0050120843 = weight(_text_:information in 563) [ClassicSimilarity], result of:
          0.0050120843 = score(doc=563,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.116372846 = fieldWeight in 563, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=563)
        0.014881751 = weight(_text_:retrieval in 563) [ClassicSimilarity], result of:
          0.014881751 = score(doc=563,freq=2.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.20052543 = fieldWeight in 563, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=563)
        0.11690029 = weight(_text_:2f in 563) [ClassicSimilarity], result of:
          0.11690029 = score(doc=563,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.56201804 = fieldWeight in 563, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=563)
        0.009972124 = product of:
          0.019944249 = sum of:
            0.019944249 = weight(_text_:22 in 563) [ClassicSimilarity], result of:
              0.019944249 = score(doc=563,freq=2.0), product of:
                0.085914485 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02453417 = queryNorm
                0.23214069 = fieldWeight in 563, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=563)
          0.5 = coord(1/2)
      0.64285713 = coord(9/14)
    
    Abstract
    In this thesis we propose three new word association measures for multi-word term extraction. We combine these association measures with LocalMaxs algorithm in our extraction model and compare the results of different multi-word term extraction methods. Our approach is language and domain independent and requires no training data. It can be applied to such tasks as text summarization, information retrieval, and document classification. We further explore the potential of using multi-word terms as an effective representation for general web-page summarization. We extract multi-word terms from human written summaries in a large collection of web-pages, and generate the summaries by aligning document words with these multi-word terms. Our system applies machine translation technology to learn the aligning process from a training set and focuses on selecting high quality multi-word terms from human written summaries to generate suitable results for web-page summarization.
    Content
    A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Computer Science. Vgl. Unter: http://www.inf.ufrgs.br%2F~ceramisch%2Fdownload_files%2Fpublications%2F2009%2Fp01.pdf.
    Date
    10. 1.2013 19:22:47
  3. Xiong, C.: Knowledge based text representations for information retrieval (2016) 0.39
    0.39002705 = product of:
      0.60670877 = sum of:
        0.015586706 = product of:
          0.07793353 = sum of:
            0.07793353 = weight(_text_:3a in 5820) [ClassicSimilarity], result of:
              0.07793353 = score(doc=5820,freq=2.0), product of:
                0.20800096 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.02453417 = queryNorm
                0.3746787 = fieldWeight in 5820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5820)
          0.2 = coord(1/5)
        0.010755588 = weight(_text_:system in 5820) [ClassicSimilarity], result of:
          0.010755588 = score(doc=5820,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.13919188 = fieldWeight in 5820, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
        0.11021465 = weight(_text_:2f in 5820) [ClassicSimilarity], result of:
          0.11021465 = score(doc=5820,freq=4.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.5298757 = fieldWeight in 5820, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
        0.11021465 = weight(_text_:2f in 5820) [ClassicSimilarity], result of:
          0.11021465 = score(doc=5820,freq=4.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.5298757 = fieldWeight in 5820, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
        0.11021465 = weight(_text_:2f in 5820) [ClassicSimilarity], result of:
          0.11021465 = score(doc=5820,freq=4.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.5298757 = fieldWeight in 5820, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
        0.11021465 = weight(_text_:2f in 5820) [ClassicSimilarity], result of:
          0.11021465 = score(doc=5820,freq=4.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.5298757 = fieldWeight in 5820, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
        0.009450877 = weight(_text_:information in 5820) [ClassicSimilarity], result of:
          0.009450877 = score(doc=5820,freq=16.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.21943474 = fieldWeight in 5820, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
        0.019842334 = weight(_text_:retrieval in 5820) [ClassicSimilarity], result of:
          0.019842334 = score(doc=5820,freq=8.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.26736724 = fieldWeight in 5820, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
        0.11021465 = weight(_text_:2f in 5820) [ClassicSimilarity], result of:
          0.11021465 = score(doc=5820,freq=4.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.5298757 = fieldWeight in 5820, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
      0.64285713 = coord(9/14)
    
    Abstract
    The successes of information retrieval (IR) in recent decades were built upon bag-of-words representations. Effective as it is, bag-of-words is only a shallow text understanding; there is a limited amount of information for document ranking in the word space. This dissertation goes beyond words and builds knowledge based text representations, which embed the external and carefully curated information from knowledge bases, and provide richer and structured evidence for more advanced information retrieval systems. This thesis research first builds query representations with entities associated with the query. Entities' descriptions are used by query expansion techniques that enrich the query with explanation terms. Then we present a general framework that represents a query with entities that appear in the query, are retrieved by the query, or frequently show up in the top retrieved documents. A latent space model is developed to jointly learn the connections from query to entities and the ranking of documents, modeling the external evidence from knowledge bases and internal ranking features cooperatively. To further improve the quality of relevant entities, a defining factor of our query representations, we introduce learning to rank to entity search and retrieve better entities from knowledge bases. In the document representation part, this thesis research also moves one step forward with a bag-of-entities model, in which documents are represented by their automatic entity annotations, and the ranking is performed in the entity space.
    This proposal includes plans to improve the quality of relevant entities with a co-learning framework that learns from both entity labels and document labels. We also plan to develop a hybrid ranking system that combines word based and entity based representations together with their uncertainties considered. At last, we plan to enrich the text representations with connections between entities. We propose several ways to infer entity graph representations for texts, and to rank documents using their structure representations. This dissertation overcomes the limitation of word based representations with external and carefully curated information from knowledge bases. We believe this thesis research is a solid start towards the new generation of intelligent, semantic, and structured information retrieval.
    Content
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Language and Information Technologies. Vgl.: https%3A%2F%2Fwww.cs.cmu.edu%2F~cx%2Fpapers%2Fknowledge_based_text_representation.pdf&usg=AOvVaw0SaTSvhWLTh__Uz_HtOtl3.
  4. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.30
    0.30280456 = product of:
      0.4710293 = sum of:
        0.015586706 = product of:
          0.07793353 = sum of:
            0.07793353 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
              0.07793353 = score(doc=701,freq=2.0), product of:
                0.20800096 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.02453417 = queryNorm
                0.3746787 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.2 = coord(1/5)
        0.018629227 = weight(_text_:system in 701) [ClassicSimilarity], result of:
          0.018629227 = score(doc=701,freq=6.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.24108742 = fieldWeight in 701, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.07793353 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.07793353 = score(doc=701,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.07793353 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.07793353 = score(doc=701,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.07793353 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.07793353 = score(doc=701,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.07793353 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.07793353 = score(doc=701,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.0100241685 = weight(_text_:information in 701) [ClassicSimilarity], result of:
          0.0100241685 = score(doc=701,freq=18.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.23274568 = fieldWeight in 701, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.03712161 = weight(_text_:retrieval in 701) [ClassicSimilarity], result of:
          0.03712161 = score(doc=701,freq=28.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.5001983 = fieldWeight in 701, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.07793353 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.07793353 = score(doc=701,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
      0.64285713 = coord(9/14)
    
    Abstract
    By the explosion of possibilities for a ubiquitous content production, the information overload problem reaches the level of complexity which cannot be managed by traditional modelling approaches anymore. Due to their pure syntactical nature traditional information retrieval approaches did not succeed in treating content itself (i.e. its meaning, and not its representation). This leads to a very low usefulness of the results of a retrieval process for a user's task at hand. In the last ten years ontologies have been emerged from an interesting conceptualisation paradigm to a very promising (semantic) modelling technology, especially in the context of the Semantic Web. From the information retrieval point of view, ontologies enable a machine-understandable form of content description, such that the retrieval process can be driven by the meaning of the content. However, the very ambiguous nature of the retrieval process in which a user, due to the unfamiliarity with the underlying repository and/or query syntax, just approximates his information need in a query, implies a necessity to include the user in the retrieval process more actively in order to close the gap between the meaning of the content and the meaning of a user's query (i.e. his information need). This thesis lays foundation for such an ontology-based interactive retrieval process, in which the retrieval system interacts with a user in order to conceptually interpret the meaning of his query, whereas the underlying domain ontology drives the conceptualisation process. In that way the retrieval process evolves from a query evaluation process into a highly interactive cooperation between a user and the retrieval system, in which the system tries to anticipate the user's information need and to deliver the relevant content proactively. Moreover, the notion of content relevance for a user's query evolves from a content dependent artefact to the multidimensional context-dependent structure, strongly influenced by the user's preferences. This cooperation process is realized as the so-called Librarian Agent Query Refinement Process. In order to clarify the impact of an ontology on the retrieval process (regarding its complexity and quality), a set of methods and tools for different levels of content and query formalisation is developed, ranging from pure ontology-based inferencing to keyword-based querying in which semantics automatically emerges from the results. Our evaluation studies have shown that the possibilities to conceptualize a user's information need in the right manner and to interpret the retrieval results accordingly are key issues for realizing much more meaningful information retrieval systems.
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
  5. Farazi, M.: Faceted lightweight ontologies : a formalization and some experiments (2010) 0.26
    0.25623736 = product of:
      0.5124747 = sum of:
        0.019483384 = product of:
          0.097416915 = sum of:
            0.097416915 = weight(_text_:3a in 4997) [ClassicSimilarity], result of:
              0.097416915 = score(doc=4997,freq=2.0), product of:
                0.20800096 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.02453417 = queryNorm
                0.46834838 = fieldWeight in 4997, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4997)
          0.2 = coord(1/5)
        0.097416915 = weight(_text_:2f in 4997) [ClassicSimilarity], result of:
          0.097416915 = score(doc=4997,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.46834838 = fieldWeight in 4997, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4997)
        0.097416915 = weight(_text_:2f in 4997) [ClassicSimilarity], result of:
          0.097416915 = score(doc=4997,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.46834838 = fieldWeight in 4997, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4997)
        0.097416915 = weight(_text_:2f in 4997) [ClassicSimilarity], result of:
          0.097416915 = score(doc=4997,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.46834838 = fieldWeight in 4997, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4997)
        0.097416915 = weight(_text_:2f in 4997) [ClassicSimilarity], result of:
          0.097416915 = score(doc=4997,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.46834838 = fieldWeight in 4997, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4997)
        0.005906798 = weight(_text_:information in 4997) [ClassicSimilarity], result of:
          0.005906798 = score(doc=4997,freq=4.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.13714671 = fieldWeight in 4997, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4997)
        0.097416915 = weight(_text_:2f in 4997) [ClassicSimilarity], result of:
          0.097416915 = score(doc=4997,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.46834838 = fieldWeight in 4997, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4997)
      0.5 = coord(7/14)
    
    Content
    PhD Dissertation at International Doctorate School in Information and Communication Technology. Vgl.: https%3A%2F%2Fcore.ac.uk%2Fdownload%2Fpdf%2F150083013.pdf&usg=AOvVaw2n-qisNagpyT0lli_6QbAQ.
    Imprint
    Trento : University / Department of information engineering and computer science
  6. Gabler, S.: Vergabe von DDC-Sachgruppen mittels eines Schlagwort-Thesaurus (2021) 0.26
    0.25623736 = product of:
      0.5124747 = sum of:
        0.019483384 = product of:
          0.097416915 = sum of:
            0.097416915 = weight(_text_:3a in 1000) [ClassicSimilarity], result of:
              0.097416915 = score(doc=1000,freq=2.0), product of:
                0.20800096 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.02453417 = queryNorm
                0.46834838 = fieldWeight in 1000, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1000)
          0.2 = coord(1/5)
        0.097416915 = weight(_text_:2f in 1000) [ClassicSimilarity], result of:
          0.097416915 = score(doc=1000,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.46834838 = fieldWeight in 1000, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1000)
        0.097416915 = weight(_text_:2f in 1000) [ClassicSimilarity], result of:
          0.097416915 = score(doc=1000,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.46834838 = fieldWeight in 1000, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1000)
        0.097416915 = weight(_text_:2f in 1000) [ClassicSimilarity], result of:
          0.097416915 = score(doc=1000,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.46834838 = fieldWeight in 1000, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1000)
        0.097416915 = weight(_text_:2f in 1000) [ClassicSimilarity], result of:
          0.097416915 = score(doc=1000,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.46834838 = fieldWeight in 1000, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1000)
        0.005906798 = weight(_text_:information in 1000) [ClassicSimilarity], result of:
          0.005906798 = score(doc=1000,freq=4.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.13714671 = fieldWeight in 1000, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1000)
        0.097416915 = weight(_text_:2f in 1000) [ClassicSimilarity], result of:
          0.097416915 = score(doc=1000,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.46834838 = fieldWeight in 1000, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1000)
      0.5 = coord(7/14)
    
    Content
    Master thesis Master of Science (Library and Information Studies) (MSc), Universität Wien. Advisor: Christoph Steiner. Vgl.: https://www.researchgate.net/publication/371680244_Vergabe_von_DDC-Sachgruppen_mittels_eines_Schlagwort-Thesaurus. DOI: 10.25365/thesis.70030. Vgl. dazu die Präsentation unter: https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=web&cd=&ved=0CAIQw7AJahcKEwjwoZzzytz_AhUAAAAAHQAAAAAQAg&url=https%3A%2F%2Fwiki.dnb.de%2Fdownload%2Fattachments%2F252121510%2FDA3%2520Workshop-Gabler.pdf%3Fversion%3D1%26modificationDate%3D1671093170000%26api%3Dv2&psig=AOvVaw0szwENK1or3HevgvIDOfjx&ust=1687719410889597&opi=89978449.
    Imprint
    Wien / Library and Information Studies : Universität
  7. Shala, E.: ¬Die Autonomie des Menschen und der Maschine : gegenwärtige Definitionen von Autonomie zwischen philosophischem Hintergrund und technologischer Umsetzbarkeit (2014) 0.22
    0.21710056 = product of:
      0.50656796 = sum of:
        0.019483384 = product of:
          0.097416915 = sum of:
            0.097416915 = weight(_text_:3a in 4388) [ClassicSimilarity], result of:
              0.097416915 = score(doc=4388,freq=2.0), product of:
                0.20800096 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.02453417 = queryNorm
                0.46834838 = fieldWeight in 4388, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4388)
          0.2 = coord(1/5)
        0.097416915 = weight(_text_:2f in 4388) [ClassicSimilarity], result of:
          0.097416915 = score(doc=4388,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.46834838 = fieldWeight in 4388, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4388)
        0.097416915 = weight(_text_:2f in 4388) [ClassicSimilarity], result of:
          0.097416915 = score(doc=4388,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.46834838 = fieldWeight in 4388, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4388)
        0.097416915 = weight(_text_:2f in 4388) [ClassicSimilarity], result of:
          0.097416915 = score(doc=4388,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.46834838 = fieldWeight in 4388, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4388)
        0.097416915 = weight(_text_:2f in 4388) [ClassicSimilarity], result of:
          0.097416915 = score(doc=4388,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.46834838 = fieldWeight in 4388, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4388)
        0.097416915 = weight(_text_:2f in 4388) [ClassicSimilarity], result of:
          0.097416915 = score(doc=4388,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.46834838 = fieldWeight in 4388, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4388)
      0.42857143 = coord(6/14)
    
    Footnote
    Vgl. unter: https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKEwizweHljdbcAhVS16QKHXcFD9QQFjABegQICRAB&url=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F271200105_Die_Autonomie_des_Menschen_und_der_Maschine_-_gegenwartige_Definitionen_von_Autonomie_zwischen_philosophischem_Hintergrund_und_technologischer_Umsetzbarkeit_Redigierte_Version_der_Magisterarbeit_Karls&usg=AOvVaw06orrdJmFF2xbCCp_hL26q.
  8. Piros, A.: Az ETO-jelzetek automatikus interpretálásának és elemzésének kérdései (2018) 0.22
    0.21710056 = product of:
      0.50656796 = sum of:
        0.019483384 = product of:
          0.097416915 = sum of:
            0.097416915 = weight(_text_:3a in 855) [ClassicSimilarity], result of:
              0.097416915 = score(doc=855,freq=2.0), product of:
                0.20800096 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.02453417 = queryNorm
                0.46834838 = fieldWeight in 855, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=855)
          0.2 = coord(1/5)
        0.097416915 = weight(_text_:2f in 855) [ClassicSimilarity], result of:
          0.097416915 = score(doc=855,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.46834838 = fieldWeight in 855, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=855)
        0.097416915 = weight(_text_:2f in 855) [ClassicSimilarity], result of:
          0.097416915 = score(doc=855,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.46834838 = fieldWeight in 855, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=855)
        0.097416915 = weight(_text_:2f in 855) [ClassicSimilarity], result of:
          0.097416915 = score(doc=855,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.46834838 = fieldWeight in 855, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=855)
        0.097416915 = weight(_text_:2f in 855) [ClassicSimilarity], result of:
          0.097416915 = score(doc=855,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.46834838 = fieldWeight in 855, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=855)
        0.097416915 = weight(_text_:2f in 855) [ClassicSimilarity], result of:
          0.097416915 = score(doc=855,freq=2.0), product of:
            0.20800096 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02453417 = queryNorm
            0.46834838 = fieldWeight in 855, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=855)
      0.42857143 = coord(6/14)
    
    Content
    Vgl. auch: New automatic interpreter for complex UDC numbers. Unter: <https%3A%2F%2Fudcc.org%2Ffiles%2FAttilaPiros_EC_36-37_2014-2015.pdf&usg=AOvVaw3kc9CwDDCWP7aArpfjrs5b>
  9. López Vargas, M.A.: "Ilmenauer Verteiltes Information REtrieval System" (IVIRES) : eine neue Architektur zur Informationsfilterung in einem verteilten Information Retrieval System (2002) 0.02
    0.021835791 = product of:
      0.101900354 = sum of:
        0.045632094 = weight(_text_:system in 4041) [ClassicSimilarity], result of:
          0.045632094 = score(doc=4041,freq=4.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.5905411 = fieldWeight in 4041, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.09375 = fieldNorm(doc=4041)
        0.014176315 = weight(_text_:information in 4041) [ClassicSimilarity], result of:
          0.014176315 = score(doc=4041,freq=4.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.3291521 = fieldWeight in 4041, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=4041)
        0.042091947 = weight(_text_:retrieval in 4041) [ClassicSimilarity], result of:
          0.042091947 = score(doc=4041,freq=4.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.5671716 = fieldWeight in 4041, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.09375 = fieldNorm(doc=4041)
      0.21428572 = coord(3/14)
    
  10. Raff, S.: CDS/ISIS - ein multilinguales Information-Retrieval-System : von der Version 2.3 zur Version 3.07; neue Entwicklungen und das Zusatzprogramm Fangorn (1996) 0.02
    0.018013608 = product of:
      0.0840635 = sum of:
        0.037644558 = weight(_text_:system in 5958) [ClassicSimilarity], result of:
          0.037644558 = score(doc=5958,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.4871716 = fieldWeight in 5958, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.109375 = fieldNorm(doc=5958)
        0.011694863 = weight(_text_:information in 5958) [ClassicSimilarity], result of:
          0.011694863 = score(doc=5958,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.27153665 = fieldWeight in 5958, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.109375 = fieldNorm(doc=5958)
        0.034724083 = weight(_text_:retrieval in 5958) [ClassicSimilarity], result of:
          0.034724083 = score(doc=5958,freq=2.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.46789268 = fieldWeight in 5958, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.109375 = fieldNorm(doc=5958)
      0.21428572 = coord(3/14)
    
  11. Parsian, D.: Überlegungen zur Aufstellungssystematik und Reklassifikation an der Fachbereichsbibliothek Afrikawissenschaften und Orientalistik (2007) 0.02
    0.015622705 = product of:
      0.07290596 = sum of:
        0.025773456 = product of:
          0.12886728 = sum of:
            0.12886728 = weight(_text_:c3 in 3396) [ClassicSimilarity], result of:
              0.12886728 = score(doc=3396,freq=2.0), product of:
                0.23923214 = queryWeight, product of:
                  9.7509775 = idf(docFreq=6, maxDocs=44218)
                  0.02453417 = queryNorm
                0.5386705 = fieldWeight in 3396, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  9.7509775 = idf(docFreq=6, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3396)
          0.2 = coord(1/5)
        0.042955764 = product of:
          0.12886728 = sum of:
            0.12886728 = weight(_text_:c3 in 3396) [ClassicSimilarity], result of:
              0.12886728 = score(doc=3396,freq=2.0), product of:
                0.23923214 = queryWeight, product of:
                  9.7509775 = idf(docFreq=6, maxDocs=44218)
                  0.02453417 = queryNorm
                0.5386705 = fieldWeight in 3396, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  9.7509775 = idf(docFreq=6, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3396)
          0.33333334 = coord(1/3)
        0.004176737 = weight(_text_:information in 3396) [ClassicSimilarity], result of:
          0.004176737 = score(doc=3396,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.09697737 = fieldWeight in 3396, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3396)
      0.21428572 = coord(3/14)
    
    Content
    Master-Thesis (ULG), Universität Wien. Universitätslehrgang Library and Information Studies
    Footnote
    Vgl. unter: http://othes.univie.ac.at/3016/1/Parsian_%C3%9Cberlegungen_zur_Aufstellungssystematik_und_Reklassifikation_an_der_AFOR.pdf.
  12. Kara, S.: ¬An ontology-based retrieval system using semantic indexing (2012) 0.02
    0.015440235 = product of:
      0.07205443 = sum of:
        0.032266766 = weight(_text_:system in 3829) [ClassicSimilarity], result of:
          0.032266766 = score(doc=3829,freq=8.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.41757566 = fieldWeight in 3829, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=3829)
        0.0100241685 = weight(_text_:information in 3829) [ClassicSimilarity], result of:
          0.0100241685 = score(doc=3829,freq=8.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.23274569 = fieldWeight in 3829, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3829)
        0.029763501 = weight(_text_:retrieval in 3829) [ClassicSimilarity], result of:
          0.029763501 = score(doc=3829,freq=8.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.40105087 = fieldWeight in 3829, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=3829)
      0.21428572 = coord(3/14)
    
    Abstract
    In this thesis, we present an ontology-based information extraction and retrieval system and its application to soccer domain. In general, we deal with three issues in semantic search, namely, usability, scalability and retrieval performance. We propose a keyword-based semantic retrieval approach. The performance of the system is improved considerably using domain-specific information extraction, inference and rules. Scalability is achieved by adapting a semantic indexing approach. The system is implemented using the state-of-the-art technologies in SemanticWeb and its performance is evaluated against traditional systems as well as the query expansion methods. Furthermore, a detailed evaluation is provided to observe the performance gain due to domain-specific information extraction and inference. Finally, we show how we use semantic indexing to solve simple structural ambiguities.
    Source
    Information Systems. 37(2012) no. 4, S.294-305
  13. Líska, M.: Evaluation of mathematics retrieval (2013) 0.01
    0.01340102 = product of:
      0.062538095 = sum of:
        0.026618723 = weight(_text_:system in 1653) [ClassicSimilarity], result of:
          0.026618723 = score(doc=1653,freq=4.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.34448233 = fieldWeight in 1653, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1653)
        0.0058474317 = weight(_text_:information in 1653) [ClassicSimilarity], result of:
          0.0058474317 = score(doc=1653,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.13576832 = fieldWeight in 1653, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1653)
        0.03007194 = weight(_text_:retrieval in 1653) [ClassicSimilarity], result of:
          0.03007194 = score(doc=1653,freq=6.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.40520695 = fieldWeight in 1653, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1653)
      0.21428572 = coord(3/14)
    
    Abstract
    The thesis deals with the evaluation of mathematics information retrieval (IR). It gives an overview of the history of regular IR evaluation, initiatives that are engaged in this field of research as well as most common methods and measures used for evaluation. The findings are applied to the specifics of mathematics retrieval. This thesis also summarizes the state-of-the-art of MIaS math search system, which is already being used in an international web portal. Latest developments aiming towards the second version of the system are described. In addition to participating in the international evaluation conference and workshop, MIaS is tested for effectiveness and efficiency in this work. Measured performance indicators are evaluated and future work is suggested accordingly.
  14. Mateika, O,: Feasibility-Studie zur Eignung der Pressedatenbank Archimedes zum Einsatz in der Pressedokumentation des Norddeutschen Rundfunks (2004) 0.01
    0.012795988 = product of:
      0.059714608 = sum of:
        0.030421399 = weight(_text_:system in 3712) [ClassicSimilarity], result of:
          0.030421399 = score(doc=3712,freq=4.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.3936941 = fieldWeight in 3712, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0625 = fieldNorm(doc=3712)
        0.009450877 = weight(_text_:information in 3712) [ClassicSimilarity], result of:
          0.009450877 = score(doc=3712,freq=4.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.21943474 = fieldWeight in 3712, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=3712)
        0.019842334 = weight(_text_:retrieval in 3712) [ClassicSimilarity], result of:
          0.019842334 = score(doc=3712,freq=2.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.26736724 = fieldWeight in 3712, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=3712)
      0.21428572 = coord(3/14)
    
    Abstract
    Das Datenbanksystem Planet, derzeit eingesetzt als Information Retrieval System in Pressearchiven innerhalb des SAD-Verbunds der ARD, soll durch ein mindestens gleichwertiges System abgelöst werden. Archimedes, derzeit eingesetzt im Dokumentationsbereich des Westdeutschen Rundfunks Köln, ist eine mögliche Alternative. Ob es die Vorgaben und Anforderungen erfüllt, wird mit Hilfe einer Feasibility-Studie geprüft, notwendige Funktionalitäten und strategisch-qualitative Anforderungen bewertet.
    Imprint
    Hamburg : Hochschule für Angewandte Wissenschaften, FB Bibliothek und Information
  15. Francu, V.: Multilingual access to information using an intermediate language (2003) 0.01
    0.010861087 = product of:
      0.05068507 = sum of:
        0.024050226 = weight(_text_:system in 1742) [ClassicSimilarity], result of:
          0.024050226 = score(doc=1742,freq=10.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.31124252 = fieldWeight in 1742, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03125 = fieldNorm(doc=1742)
        0.009450877 = weight(_text_:information in 1742) [ClassicSimilarity], result of:
          0.009450877 = score(doc=1742,freq=16.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.21943474 = fieldWeight in 1742, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=1742)
        0.017183965 = weight(_text_:retrieval in 1742) [ClassicSimilarity], result of:
          0.017183965 = score(doc=1742,freq=6.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.23154683 = fieldWeight in 1742, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=1742)
      0.21428572 = coord(3/14)
    
    Abstract
    While being theoretically so widely available, information can be restricted from a more general use by linguistic barriers. The linguistic aspects of the information languages and particularly the chances of an enhanced access to information by means of multilingual access facilities will make the substance of this thesis. The main problem of this research is thus to demonstrate that information retrieval can be improved by using multilingual thesaurus terms based on an intermediate or switching language to search with. Universal classification systems in general can play the role of switching languages for reasons dealt with in the forthcoming pages. The Universal Decimal Classification (UDC) in particular is the classification system used as example of a switching language for our objectives. The question may arise: why a universal classification system and not another thesaurus? Because the UDC like most of the classification systems uses symbols. Therefore, it is language independent and the problems of compatibility between such a thesaurus and different other thesauri in different languages are avoided. Another question may still arise? Why not then, assign running numbers to the descriptors in a thesaurus and make a switching language out of the resulting enumerative system? Because of some other characteristics of the UDC: hierarchical structure and terminological richness, consistency and control. One big problem to find an answer to is: can a thesaurus be made having as a basis a classification system in any and all its parts? To what extent this question can be given an affirmative answer? This depends much on the attributes of the universal classification system which can be favourably used to this purpose. Examples of different situations will be given and discussed upon beginning with those classes of UDC which are best fitted for building a thesaurus structure out of them (classes which are both hierarchical and faceted)...
    Content
    Inhalt: INFORMATION LANGUAGES: A LINGUISTIC APPROACH MULTILINGUAL ASPECTS IN INFORMATION STORAGE AND RETRIEVAL COMPATIBILITY AND CONVERTIBILITY OF INFORMATION LANGUAGES CURRENT TRENDS IN MULTILINGUAL ACCESS BUILDING UDC-BASED MULTILINGUAL THESAURI ONLINE APPLICATIONS OF THE UDC-BASED MULTILINGUAL THESAURI THE IMPACT OF SPECIFICITY ON THE RETRIEVAL POWER OF A UDC-BASED MULTILINGUAL THESAURUS FINAL REMARKS AND GENERAL CONCLUSIONS Proefschrift voorgelegd tot het behalen van de graad van doctor in de Taal- en Letterkunde aan de Universiteit Antwerpen. - Vgl.: http://dlist.sir.arizona.edu/1862/.
  16. Czechowski, M.: Konzept zur Realisierung eines digitalen Firmenarchivs am Beispiel Deutsche Lufthansa AG (2006) 0.01
    0.010293491 = product of:
      0.048036292 = sum of:
        0.021511177 = weight(_text_:system in 109) [ClassicSimilarity], result of:
          0.021511177 = score(doc=109,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.27838376 = fieldWeight in 109, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0625 = fieldNorm(doc=109)
        0.006682779 = weight(_text_:information in 109) [ClassicSimilarity], result of:
          0.006682779 = score(doc=109,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.1551638 = fieldWeight in 109, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=109)
        0.019842334 = weight(_text_:retrieval in 109) [ClassicSimilarity], result of:
          0.019842334 = score(doc=109,freq=2.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.26736724 = fieldWeight in 109, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=109)
      0.21428572 = coord(3/14)
    
    Abstract
    Die vorliegende Diplomarbeit zeigt auf, wie ein digitales, web-basiertes Wirtschaftsarchiv trotz begrenzter Ressourcen realisiert werden kann. Dabei werden auch die Probleme der Langzeitarchivierung thematisiert und der neue ISO-Standard PDF/A als neuer Lösungsansatz vorgestellt. Weiter wird ein Information-Retrieval-System vorgestellt, das die mitunter arbeitsaufwändige inhaltliche Erschließung eigenständig durchführt und sowohl Laien als auch Spezialisten eine angemessene Recherchemöglichkeit bietet. Das Konzept ist ausschliesslich auf private Wirtschaftsarchive ausgerichtet, da rechtliche Aspekte - die z.B. in der revissionsicheren Archivierung eine Rolle spielen - nicht berücksichtigt werden.
  17. Hemmje, M.: Unterstützung von Information-Retrieval-Dialogen mit Informationssystemen durch interaktive Informationsvisualisierung (1999) 0.01
    0.010071768 = product of:
      0.047001585 = sum of:
        0.010755588 = weight(_text_:system in 5002) [ClassicSimilarity], result of:
          0.010755588 = score(doc=5002,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.13919188 = fieldWeight in 5002, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03125 = fieldNorm(doc=5002)
        0.008184699 = weight(_text_:information in 5002) [ClassicSimilarity], result of:
          0.008184699 = score(doc=5002,freq=12.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.19003606 = fieldWeight in 5002, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=5002)
        0.028061297 = weight(_text_:retrieval in 5002) [ClassicSimilarity], result of:
          0.028061297 = score(doc=5002,freq=16.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.37811437 = fieldWeight in 5002, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=5002)
      0.21428572 = coord(3/14)
    
    Content
    Gegenstand dieser Arbeit ist die Anforderungsanalyse, die Modellierung, der Entwurf und die exemplarische Realisierung, Integration und Bewertung eines Interaktiven Informationsvisualisierungsmodells zur Unterstützung von Informationsdialogen mit Information-Retrieval-Systemen, von darauf aufbauenden interaktiven Informationsvisualisierungsbeispielen, den dazu korrespondierenden Softwarekomponenten sowie deren integriertem Einsatz und Bewertung in einer exemplarischen Anwendungslösung für die Unterstützung interaktiver visuelldirekt manipulative Informationsdialoge mit einem Informations-Retrieval-System. Die Arbeit enthält den Entwurf und die Implementierung der prototypischen Anwendung LyberWorld zur computergraphischen Visualisierung von inhaltsorientierten Informationsdialogen zwischen naiven Benutzern und Datenbanksystemen mit Information-Retrieval-Funktionen. Im Vordergrund steht dabei das Ziel, naiven Benutzern innerhalb eines visuell direkt manipulativen Informationsdialoges eine Unterstützung bei der Benutzung von Information-Retrieval- und Data-Mining-Funktionen auf der Basis von interaktiven Informationsvisualisierungskomponenten zur Verfügung zu stellen. Bezüglich der kognitiven Effizienz der Benutzung solcher Informationsvisualisierungskomponenten durch einen naiven Benutzer, ist es die Grundannahme der Arbeit, daß bei unveränderter Informations-Retrieval-Basisfunktionalität mit Hilfe einer geeigneten graphischen Benutzungsschnittstelle durch Ausnutzung der menschlichen Fähigkeit zur visuellen Wahrnehmung und direktmanipulativen Interaktion ein natürlicherer und kognitiv effizienterer Informationsdialog erzielt wird, als dies mit herkömmlichen z.B. Formblatt oder formalsprachlich orientierten Interaktionsparadigmen der Fall ist. Aus diesem Grund werden in der Arbeit visuell direkt manipulative Informationsvisualisierungs- und Darstellungsmethoden sowie visuell direkt manipulative Metaphern für elementare Funktionen des Informationsdialoges hergeleitet, implementiert und miteinander integriert.
    Im Gegensatz zu anderen Ansätzen, die Kommando-, Menü- oder Formblatt-orientierte Interaktionsparadigmen verwenden, schlagen wir für die Mensch-Maschine-Schnittstelle von Informationssystemen eine interaktive Informationsvisualisierung vor, bei der den geometrischen, räumlichen und graphischen Attributen der dargestellten Informationsobjekte besondere Bedeutung zukommt. Mehrdimensionale, computergraphische Informationsvisualisierungen des informationellen Kontextes des Informationsdialoges bilden das gemeinsame Kommunikations- und Interaktionsmedium zwischen den konzeptuellen Informationsmodellen und den Information-Retrieval-Funktionen des Systems sowie dem mentalen Modell, das der Benutzer von der Informationsmenge und den Informationsfunktionen des Informationssystems hat. Dabei besteht zwischen den visuell direkt manipulativen computergraphischen Informationsvisualisierungsobjekten der Benutzungsschnittstelle und den Informationsobjekten der Datenbasis eine funktionale Verknüpfung, die dem Benutzer durch die visuelle Ausprägung der graphischen Visualisierungsobjekte und die Verwendung von visuellen Metaphern vermittelt wird. Die automatischen Such- und Bewertungsfunktionen des Datenbank- oder Information-Retrieval-Systems werden ebenfalls in Form visuell direkt manipulativer Interaktionsmechanismen zur Verfügung gestellt.
  18. Noy, N.F.: Knowledge representation for intelligent information retrieval in experimental sciences (1997) 0.01
    0.009433313 = product of:
      0.044022128 = sum of:
        0.010755588 = weight(_text_:system in 694) [ClassicSimilarity], result of:
          0.010755588 = score(doc=694,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.13919188 = fieldWeight in 694, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03125 = fieldNorm(doc=694)
        0.011082135 = weight(_text_:information in 694) [ClassicSimilarity], result of:
          0.011082135 = score(doc=694,freq=22.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.25731003 = fieldWeight in 694, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=694)
        0.022184404 = weight(_text_:retrieval in 694) [ClassicSimilarity], result of:
          0.022184404 = score(doc=694,freq=10.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.29892567 = fieldWeight in 694, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=694)
      0.21428572 = coord(3/14)
    
    Abstract
    More and more information is available on-line every day. The greater the amount of on-line information, the greater the demand for tools that process and disseminate this information. Processing electronic information in the form of text and answering users' queries about that information intelligently is one of the great challenges in natural language processing and information retrieval. The research presented in this talk is centered on the latter of these two tasks: intelligent information retrieval. In order for information to be retrieved, it first needs to be formalized in a database or knowledge base. The ontology for this formalization and assumptions it is based on are crucial to successful intelligent information retrieval. We have concentrated our effort on developing an ontology for representing knowledge in the domains of experimental sciences, molecular biology in particular. We show that existing ontological models cannot be readily applied to represent this domain adequately. For example, the fundamental notion of ontology design that every "real" object is defined as an instance of a category seems incompatible with the universe where objects can change their category as a result of experimental procedures. Another important problem is representing complex structures such as DNA, mixtures, populations of molecules, etc., that are very common in molecular biology. We present extensions that need to be made to an ontology to cover these issues: the representation of transformations that change the structure and/or category of their participants, and the component relations and spatial structures of complex objects. We demonstrate examples of how the proposed representations can be used to improve the quality and completeness of answers to user queries; discuss techniques for evaluating ontologies and show a prototype of an Information Retrieval System that we developed.
  19. Markó, K.G.: Foundation, implementation and evaluation of the MorphoSaurus system (2008) 0.01
    0.009411374 = product of:
      0.043919746 = sum of:
        0.018822279 = weight(_text_:system in 4415) [ClassicSimilarity], result of:
          0.018822279 = score(doc=4415,freq=8.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.2435858 = fieldWeight in 4415, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4415)
        0.007735425 = weight(_text_:information in 4415) [ClassicSimilarity], result of:
          0.007735425 = score(doc=4415,freq=14.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.1796046 = fieldWeight in 4415, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4415)
        0.017362041 = weight(_text_:retrieval in 4415) [ClassicSimilarity], result of:
          0.017362041 = score(doc=4415,freq=8.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.23394634 = fieldWeight in 4415, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4415)
      0.21428572 = coord(3/14)
    
    Abstract
    This work proposes an approach which is intended to meet the particular challenges of Medical Language Processing, in particular medical information retrieval. At its core lies a new type of dictionary, in which the entries are equivalence classes of subwords, i.e., semantically minimal units. These equivalence classes capture intralingual as well as interlingual synonymy. As equivalence classes abstract away from subtle particularities within and between languages and reference to them is realized via a language-independent conceptual system, they form an interlingua. In this work, the theoretical foundations of this approach are elaborated on. Furthermore, design considerations of applications based on the subword methodology are drawn up and showcase implementations are evaluated in detail. Starting with the introduction of Medical Linguistics as a field of active research in Chapter two, its consideration as a domain separated form general linguistics is motivated. In particular, morphological phenomena inherent to medical language are figured in more detail, which leads to an alternative view on medical terms and the introduction of the notion of subwords. Chapter three describes the formal foundation of subwords and the underlying linguistic declarative as well as procedural knowledge. An implementation of the subword model for the medical domain, the MorphoSaurus system, is presented in Chapter four. Emphasis will be given on the multilingual aspect of the proposed approach, including English, German, and Portuguese. The automatic acquisition of (medical) subwords for other languages (Spanish, French, and Swedish), and their integration in already available resources is described in the fifth Chapter.
    The proper handling of acronyms plays a crucial role in medical texts, e.g. in patient records, as well as in scientific literature. Chapter six presents an approach, in which acronyms are automatically acquired from (bio-) medical literature. Furthermore, acronyms and their definitions in different languages are linked to each other using the MorphoSaurus text processing system. Automatic word sense disambiguation is still one of the most challenging tasks in Natural Language Processing. In Chapter seven, cross-lingual considerations lead to a new methodology for automatic disambiguation applied to subwords. Beginning with Chapter eight, a series of applications based onMorphoSaurus are introduced. Firstly, the implementation of the subword approach within a crosslanguage information retrieval setting for the medical domain is described and evaluated on standard test document collections. In Chapter nine, this methodology is extended to multilingual information retrieval in the Web, for which user queries are translated into target languages based on the segmentation into subwords and their interlingual mappings. The cross-lingual, automatic assignment of document descriptors to documents is the topic of Chapter ten. A large-scale evaluation of a heuristic, as well as a statistical algorithm is carried out using a prominent medical thesaurus as a controlled vocabulary. In Chapter eleven, it will be shown how MorphoSaurus can be used to map monolingual, lexical resources across different languages. As a result, a large multilingual medical lexicon with high coverage and complete lexical information is built and evaluated against a comparable, already available and commonly used lexical repository for the medical domain. Chapter twelve sketches a few applications based on MorphoSaurus. The generality and applicability of the subword approach to other domains is outlined, and proof-of-concepts in real-world scenarios are presented. Finally, Chapter thirteen recapitulates the most important aspects of MorphoSaurus and the potential benefit of its employment in medical information systems is carefully assessed, both for medical experts in their everyday life, but also with regard to health care consumers and their existential information needs.
    Source
    Subword indexing, lexical learning and word sense disambiguation for medical crosslanguage information retrieval
  20. Haveliwala, T.: Context-Sensitive Web search (2005) 0.01
    0.008836104 = product of:
      0.04123515 = sum of:
        0.015210699 = weight(_text_:system in 2567) [ClassicSimilarity], result of:
          0.015210699 = score(doc=2567,freq=4.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.19684705 = fieldWeight in 2567, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03125 = fieldNorm(doc=2567)
        0.0088404855 = weight(_text_:information in 2567) [ClassicSimilarity], result of:
          0.0088404855 = score(doc=2567,freq=14.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.20526241 = fieldWeight in 2567, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=2567)
        0.017183965 = weight(_text_:retrieval in 2567) [ClassicSimilarity], result of:
          0.017183965 = score(doc=2567,freq=6.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.23154683 = fieldWeight in 2567, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=2567)
      0.21428572 = coord(3/14)
    
    Abstract
    As the Web continues to grow and encompass broader and more diverse sources of information, providing effective search facilities to users becomes an increasingly challenging problem. To help users deal with the deluge of Web-accessible information, we propose a search system which makes use of context to improve search results in a scalable way. By context, we mean any sources of information, in addition to any search query, that provide clues about the user's true information need. For instance, a user's bookmarks and search history can be considered a part of the search context. We consider two types of context-based search. The first type of functionality we consider is "similarity search." In this case, as the user is browsing Web pages, URLs for pages similar to the current page are retrieved and displayed in a side panel. No query is explicitly issued; context alone (i.e., the page currently being viewed) is used to provide the user with useful related information. The second type of functionality involves taking search context into account when ranking results to standard search queries. Web search differs from traditional information retrieval tasks in several major ways, making effective context-sensitive Web search challenging. First, scalability is of critical importance. With billions of publicly accessible documents, the Web is much larger than traditional datasets. Similarly, with millions of search queries issued each day, the query load is much higher than for traditional information retrieval systems. Second, there are no guarantees on the quality ofWeb pages, with Web-authors taking an adversarial, rather than cooperative, approach in attempts to inflate the rankings of their pages. Third, there is a significant amount of metadata embodied in the link structure corresponding to the hyperlinks between Web pages that can be exploitedduring the retrieval process. In this thesis, we design a search system, using the Stanford WebBase platform, that exploits the link structure of the Web to provide scalable, context-sensitive search.

Languages

  • d 240
  • e 39
  • a 1
  • f 1
  • hu 1
  • pt 1
  • More… Less…

Types

Themes

Subjects