Search (84 results, page 2 of 5)

  • × author_ss:"Hjoerland, B."
  1. Hjoerland, B.: Are relations in thesauri "context-free, definitional, and true in all possible worlds"? (2015) 0.02
    0.023913007 = product of:
      0.047826014 = sum of:
        0.017165681 = weight(_text_:information in 2033) [ClassicSimilarity], result of:
          0.017165681 = score(doc=2033,freq=8.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.19395474 = fieldWeight in 2033, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2033)
        0.030660335 = product of:
          0.06132067 = sum of:
            0.06132067 = weight(_text_:organization in 2033) [ClassicSimilarity], result of:
              0.06132067 = score(doc=2033,freq=6.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.34114468 = fieldWeight in 2033, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2033)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Much of the literature of information science and knowledge organization has accepted and built upon Elaine Svenonius's (2004) claim that "paradigmatic relationships are those that are context-free, definitional, and true in all possible worlds" (p. 583). At the same time, the literature demonstrates a common understanding that paradigmatic relations are the kinds of semantic relations used in thesauri and other knowledge organization systems (including equivalence relations, hierarchical relations, and associative relations). This understanding is problematic and harmful because it directs attention away from the empirical and contextual basis for knowledge-organizing systems. Whether A is a kind of X is certainly not context-free and definitional in empirical sciences or in much everyday information. Semantic relations are theory-dependent and, in biology, for example, a scientific revolution has taken place in which many relations have changed following the new taxonomic paradigm named "cladism." This biological example is not an exception, but the norm. Semantic relations including paradigmatic relations are not a priori but are dependent on subject knowledge, scientific findings, and paradigms. As long as information scientists and knowledge organizers isolate themselves from subject knowledge, knowledge organization cannot possibly progress.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.7, S.1367-1373
  2. Hjoerland, B.: Facet analysis : the logical approach to knowledge organization (2013) 0.02
    0.023770738 = product of:
      0.047541477 = sum of:
        0.01213797 = weight(_text_:information in 2720) [ClassicSimilarity], result of:
          0.01213797 = score(doc=2720,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.13714671 = fieldWeight in 2720, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2720)
        0.035403505 = product of:
          0.07080701 = sum of:
            0.07080701 = weight(_text_:organization in 2720) [ClassicSimilarity], result of:
              0.07080701 = score(doc=2720,freq=8.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.39391994 = fieldWeight in 2720, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2720)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The facet-analytic paradigm is probably the most distinct approach to knowledge organization within Library and Information Science, and in many ways it has dominated what has be termed "modern classification theory". It was mainly developed by S.R. Ranganathan and the British Classification Research Group, but it is mostly based on principles of logical division developed more than two millennia ago. Colon Classification (CC) and Bliss 2 (BC2) are among the most important systems developed on this theoretical basis, but it has also influenced the development of other systems, such as the Dewey Decimal Classification (DDC) and is also applied in many websites. It still has a strong position in the field and it is the most explicit and "pure" theoretical approach to knowledge organization (KO) (but it is not by implication necessarily also the most important one). The strength of this approach is its logical principles and the way it provides structures in knowledge organization systems (KOS). The main weaknesses are (1) its lack of empirical basis and (2) its speculative ordering of knowledge without basis in the development or influence of theories and socio-historical studies. It seems to be based on the problematic assumption that relations between concepts are a priori and not established by the development of models, theories and laws.
    Source
    Information processing and management. 49(2013) no.2, S.545-557
  3. Hjoerland, B.; Scerri, E.; Dupré, J.: Forum: The Philosophy of Classification : The Periodic Table and the Philosophy of Classification - What is the Nature of the Periodic Table as a Classification System? - A Note on the Debate Between Hjørland and Scerri on the Significance of the Periodic Table (2011) 0.02
    0.023545908 = product of:
      0.047091816 = sum of:
        0.01029941 = weight(_text_:information in 4294) [ClassicSimilarity], result of:
          0.01029941 = score(doc=4294,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 4294, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4294)
        0.036792405 = product of:
          0.07358481 = sum of:
            0.07358481 = weight(_text_:organization in 4294) [ClassicSimilarity], result of:
              0.07358481 = score(doc=4294,freq=6.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.40937364 = fieldWeight in 4294, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4294)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Thanks to Professor Eric Scerri for engaging in debate in this journal (Scerri 2011) by replying to my review (Hjørland 2008a) of his book (Scerri 2007). One of my points has been that we in our community (Knowledge Organization, KO / Library and Information Science, LIS) have been too isolated from broader academic fields related to classification and the organization of knowledge. The present debate is a step towards reversing this situation. Bezug zu: Scerri, E.R.: The periodic table: its story and its significance. Oxford: Oxford University Press 2007. xxii, 346 S. und die Rezension dazu in: KO 35(2008) no.4, S.251-254 (B. Hjoerland).
    Source
    Knowledge organization. 38(2011) no.1, S.9-24
  4. Hjoerland, B.: Theories are knowledge organizing systems (KOS) (2015) 0.02
    0.023545908 = product of:
      0.047091816 = sum of:
        0.01029941 = weight(_text_:information in 2193) [ClassicSimilarity], result of:
          0.01029941 = score(doc=2193,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 2193, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2193)
        0.036792405 = product of:
          0.07358481 = sum of:
            0.07358481 = weight(_text_:organization in 2193) [ClassicSimilarity], result of:
              0.07358481 = score(doc=2193,freq=6.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.40937364 = fieldWeight in 2193, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2193)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The notion "theory" is a neglected concept in the field of information science and knowledge organization (KO) as well as generally in philosophy and in many other fields, although there are exceptions from this general neglect (e.g., the so-called "theory theory" in cognitive psychology). This article introduces different conceptions of "theory" and argues that a theory is a statement or a conception, which is considered open to be questioned and which is connected with background assumptions. Theories form interconnected systems of grand, middle rank and micro theories and actions, practices and artifacts are theory-laden. The concept of knowledge organization system (KOS) is briefly introduced and discussed. A theory is a form of KOS and theories are the point of departure of any KOS. It is generally understood in KO that concepts are the units of KOSs, but the theory-dependence of concepts brings theories to the forefront in analyzing concepts and KOSs. The study of theories should therefore be given a high priority within KO concerning the construction and evaluation of KOSs.
    Source
    Knowledge organization. 42(2015) no.2, S.113-128
  5. Hjoerland, B.: Knowledge organization (KO) (2017) 0.02
    0.023531828 = product of:
      0.047063656 = sum of:
        0.012015978 = weight(_text_:information in 3418) [ClassicSimilarity], result of:
          0.012015978 = score(doc=3418,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.13576832 = fieldWeight in 3418, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3418)
        0.03504768 = product of:
          0.07009536 = sum of:
            0.07009536 = weight(_text_:organization in 3418) [ClassicSimilarity], result of:
              0.07009536 = score(doc=3418,freq=4.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.38996086 = fieldWeight in 3418, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3418)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This article presents and discusses the concept "subject" or subject matter (of documents) as it has been examined in library and information science (LIS) for more than 100 years. Different theoretical positions are outlined and it is found that the most important distinction is between documentoriented views versus request-oriented views. The documentoriented view conceives subject as something inherent in documents, whereas the request-oriented view (or the policybased view) understands subject as an attribution made to documents in order to facilitate certain uses of them. Related concepts such as concepts, aboutness, topic, isness and ofness are also briefly presented. The conclusion is that the most fruitful way of defining "subject" (of a document) is the document's informative or epistemological potentials, that is, the document's potentials of informing users and advancing the development of knowledge.
    Source
    Knowledge organization. 44(2017) no.1, S.55-64
  6. Hjoerland, B.: Arguments for 'the bibliographical paradigm' : some thoughts inspired by the new English edition of the UDC (2007) 0.02
    0.0232352 = product of:
      0.0464704 = sum of:
        0.025228297 = weight(_text_:information in 552) [ClassicSimilarity], result of:
          0.025228297 = score(doc=552,freq=12.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.2850541 = fieldWeight in 552, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=552)
        0.021242103 = product of:
          0.042484205 = sum of:
            0.042484205 = weight(_text_:organization in 552) [ClassicSimilarity], result of:
              0.042484205 = score(doc=552,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.23635197 = fieldWeight in 552, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.046875 = fieldNorm(doc=552)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The term 'the bibliographic paradigm' is used in the literature of library and information science, but is a very seldom term and is almost always negatively described. This paper reconsiders this concept. Method. The method is mainly 'analytical'. Empirical data concerning the current state of the UDC-classification system are also presented in order to illuminate the connection between theory and practice. Analysis. The bibliographic paradigm is understood as a perspective in library and information science focusing on documents and information resources, their description, organization, mediation and use. This perspective is examined as one among other metatheories of library and information science and its philosophical assumptions and implications are outlined. Results. The neglect and misunderstanding of 'the bibliographic paradigm' as well as the quality of the new UDC-classification indicate that both the metatheoretical discourses on library and information science and its concrete practice seem to be in a state of crisis.
    Source
    Information research. 12(2007) no.4, paper colis06
  7. Hjoerland, B.: Classical databases and knowledge organization : a case for boolean retrieval and human decision-making during searches (2015) 0.02
    0.02302882 = product of:
      0.04605764 = sum of:
        0.02102358 = weight(_text_:information in 2124) [ClassicSimilarity], result of:
          0.02102358 = score(doc=2124,freq=12.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.23754507 = fieldWeight in 2124, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2124)
        0.025034059 = product of:
          0.050068118 = sum of:
            0.050068118 = weight(_text_:organization in 2124) [ClassicSimilarity], result of:
              0.050068118 = score(doc=2124,freq=4.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.27854347 = fieldWeight in 2124, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2124)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This paper considers classical bibliographic databases based on the Boolean retrieval model (such as MEDLINE and PsycInfo). This model is challenged by modern search engines and information retrieval (IR) researchers, who often consider Boolean retrieval a less efficient approach. The paper examines this claim and argues for the continued value of Boolean systems, and suggests two further considerations: (a) the important role of human expertise in searching (expert searchers and "information literate" users) and (b) the role of library and information science and knowledge organization (KO) in the design and use of classical databases. An underlying issue is the kind of retrieval system for which one should aim. Warner's (2010) differentiation between the computer science traditions and an older library-oriented tradition seems important; the former aim to transform queries automatically into (ranked) sets of relevant documents, whereas the latter aims to increase the "selection power" of users. The Boolean retrieval model is valuable in providing users with the power to make informed searches and have full control over what is found and what is not. These issues may have significant implications for the maintenance of information science and KO as research fields as well as for the information profession as a profession in its own right.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.8, S.1559-1575
  8. Hjoerland, B.: Citation analysis : a social and dynamic approach to knowledge organization (2013) 0.02
    0.022763126 = product of:
      0.04552625 = sum of:
        0.014865918 = weight(_text_:information in 2710) [ClassicSimilarity], result of:
          0.014865918 = score(doc=2710,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.16796975 = fieldWeight in 2710, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2710)
        0.030660335 = product of:
          0.06132067 = sum of:
            0.06132067 = weight(_text_:organization in 2710) [ClassicSimilarity], result of:
              0.06132067 = score(doc=2710,freq=6.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.34114468 = fieldWeight in 2710, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2710)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Knowledge organization (KO) and bibliometrics have traditionally been seen as separate subfields of library and information science, but bibliometric techniques make it possible to identify candidate terms for thesauri and to organize knowledge by relating scientific papers and authors to each other and thereby indicating kinds of relatedness and semantic distance. It is therefore important to view bibliometric techniques as a family of approaches to KO in order to illustrate their relative strengths and weaknesses. The subfield of bibliometrics concerned with citation analysis forms a distinct approach to KO which is characterized by its social, historical and dynamic nature, its close dependence on scholarly literature and its explicit kind of literary warrant. The two main methods, co-citation analysis and bibliographic coupling represent different things and thus neither can be considered superior for all purposes. The main difference between traditional knowledge organization systems (KOSs) and maps based on citation analysis is that the first group represents intellectual KOSs, whereas the second represents social KOSs. For this reason bibliometric maps cannot be expected ever to be fully equivalent to scholarly taxonomies, but they are - along with other forms of KOSs - valuable tools for assisting users' to orient themselves to the information ecology. Like other KOSs, citation-based maps cannot be neutral but will always be based on researchers' decisions, which tend to favor certain interests and views at the expense of others.
    Source
    Information processing and management. 49(2013) no.6, S.1313-1325
  9. Hjoerland, B.: Does the traditional thesaurus have a place in modern information retrieval? (2016) 0.02
    0.022763126 = product of:
      0.04552625 = sum of:
        0.014865918 = weight(_text_:information in 2915) [ClassicSimilarity], result of:
          0.014865918 = score(doc=2915,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.16796975 = fieldWeight in 2915, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2915)
        0.030660335 = product of:
          0.06132067 = sum of:
            0.06132067 = weight(_text_:organization in 2915) [ClassicSimilarity], result of:
              0.06132067 = score(doc=2915,freq=6.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.34114468 = fieldWeight in 2915, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2915)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The introduction (1.0) of this article considers the status of the thesaurus within LIS and asks about the future prospect for thesauri. The main following points are: (2.0) Any knowledge organization system (KOS) is today threatened by Google-like systems, and it is therefore important to consider if there still is a need for knowledge organization (KO) in the traditional sense. (3.0) A thesaurus is a somewhat reduced form of KOS compared to, for example, an ontology, and its "bundling" and restricted number of semantic relations has never been justified theoretically or empirically. Which semantic relations are most fruitful for a given task is thus an open question, and different domains may need different kinds of KOS including different sets of relations between terms. (4.0) A KOS is a controlled vocabulary (CV) and should not be considered a "perfect language" (Eco 1995) that is simply able to remove the ambiguity of natural language; rather much ambiguity in language represents a battle between many "voices" (Bakhtin 1981) or "paradigms" (Kuhn 1962). In this perspective, a specific KOS, e.g. a specific thesaurus, is just one "voice" among many voices, and that voice has to demonstrate its authority and utility. It is concluded (5.0) that the traditional thesaurus does not have a place in modern information retrieval, but that more flexible semantic tools based on proper studies of domains will always be important.
    Content
    Beitrag in einem Special issue: The Great Debate: "This House Believes that the Traditional Thesaurus has no Place in Modern Information Retrieval." [19 February 2015, 14:00-17:30 preceded by ISKO UK AGM and followed by networking, wine and nibbles; vgl.: http://www.iskouk.org/content/great-debate].
    Source
    Knowledge organization. 43(2016) no.3, S.145-159
  10. Hjoerland, B.: Data (with big data and database semantics) (2018) 0.02
    0.022763126 = product of:
      0.04552625 = sum of:
        0.014865918 = weight(_text_:information in 4651) [ClassicSimilarity], result of:
          0.014865918 = score(doc=4651,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.16796975 = fieldWeight in 4651, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4651)
        0.030660335 = product of:
          0.06132067 = sum of:
            0.06132067 = weight(_text_:organization in 4651) [ClassicSimilarity], result of:
              0.06132067 = score(doc=4651,freq=6.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.34114468 = fieldWeight in 4651, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4651)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    It is argued that data should be defined as information on properties of units of analysis. Epistemologically it is important to establish that what is considered data by somebody need not be data for somebody else. This article considers the nature of data and "big data" and the relation between data, information, knowledge and documents. It is common for all these concepts that they are about phenomena produced in specific contexts for specific purposes and may be represented in documents, including as representations in databases. In that process, they are taken out of their original contexts and put into new ones and thereby data loses some or all their meaning due to the principle of semantic holism. Some of this lost meaning should be reestablished in the databases and the representations of data/documents cannot be understood as a neutral activity, but as an activity supporting the overall goal implicit in establishing the database. To utilize (big) data (as it is the case with utilizing information, knowledge and documents) demands first of all the identification of the potentials of these data for relevant purposes. The most fruitful theoretical frame for knowledge organization and data science is the social epistemology suggested by Shera (1951). One important aspect about big data is that they are often unintentional traces we leave during all kinds of activities. Their potential to inform somebody about something is therefore less direct compared to data that have been produced intentionally as, for example, scientific databases.
    Series
    Reviews of concepts in knowledge organization
    Source
    Knowledge organization. 45(2018) no.8, S.685-708
  11. Hjoerland, B.: ¬The methodology of constructing classification schemes : a discussion of the state-of-the-art (2003) 0.02
    0.022570834 = product of:
      0.045141667 = sum of:
        0.016818866 = weight(_text_:information in 2760) [ClassicSimilarity], result of:
          0.016818866 = score(doc=2760,freq=12.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.19003606 = fieldWeight in 2760, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=2760)
        0.028322803 = product of:
          0.056645606 = sum of:
            0.056645606 = weight(_text_:organization in 2760) [ClassicSimilarity], result of:
              0.056645606 = score(doc=2760,freq=8.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.31513596 = fieldWeight in 2760, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2760)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Special classifications have been somewhat neglected in KO compared to general classifications. The methodology of constructing special classifications is important, however, also for the methodology of constructing general classification schemes. The methodology of constructing special classifications can be regarded as one among about a dozen approaches to domain analysis. The methodology of (special) classification in LIS has been dominated by the rationalistic facet-analytic tradition, which, however, neglects the question of the empirical basis of classification. The empirical basis is much better grasped by, for example, bibliometric methods. Even the combination of rational and empirical methods is insufficient. This presentation will provide evidence for the necessity of historical and pragmatic methods for the methodology of classification and will point to the necessity of analyzing "paradigms". The presentation covers the methods of constructing classifications from Ranganathan to the design of ontologies in computer science and further to the recent "paradigm shift" in classification research. 1. Introduction Classification of a subject field is one among about eleven approaches to analyzing a domain that are specific for information science and in my opinion define the special competencies of information specialists (Hjoerland, 2002a). Classification and knowledge organization are commonly regarded as core qualifications of librarians and information specialists. Seen from this perspective one expects a firm methodological basis for the field. This paper tries to explore the state-of-the-art conceming the methodology of classification. 2. Classification: Science or non-science? As it is part of the curriculum at universities and subject in scientific journals and conferences like ISKO, orte expects classification/knowledge organization to be a scientific or scholarly activity and a scientific field. However, very often when information specialists classify or index documents and when they revise classification system, the methods seem to be rather ad hoc. Research libraries or scientific databases may employ people with adequate subject knowledge. When information scientists construct or evaluate systems, they very often elicit the knowledge from "experts" (Hjorland, 2002b, p. 260). Mostly no specific arguments are provided for the specific decisions in these processes.
    Series
    Advances in knowledge organization; vol.8
    Source
    Challenges in knowledge representation and organization for the 21st century: Integration of knowledge across boundaries. Proceedings of the 7th ISKO International Conference Granada, Spain, July 10-13, 2002. Ed.: M. López-Huertas
    Theme
    Information Gateway
  12. Hjoerland, B.: Information retrieval, text composition, and semantics (1998) 0.02
    0.02213614 = product of:
      0.04427228 = sum of:
        0.02303018 = weight(_text_:information in 649) [ClassicSimilarity], result of:
          0.02303018 = score(doc=649,freq=10.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.2602176 = fieldWeight in 649, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=649)
        0.021242103 = product of:
          0.042484205 = sum of:
            0.042484205 = weight(_text_:organization in 649) [ClassicSimilarity], result of:
              0.042484205 = score(doc=649,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.23635197 = fieldWeight in 649, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.046875 = fieldNorm(doc=649)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Information science (IS) is concerned with the searching and retrieval of text and other information (IR), mostly in electronic databases and on the Internet. Such databases contain fulltext (or other kinds of documents, e.g. pictures) and/or document representations and/or different kinds of 'value added information'. The core theoretical problems for IS is related to the determination of the usefulness of different 'subject access points' in electronic databases. This problem is again related to theories of meaning and semantics. This paper outlines some important principles in the design of documents done in the field of 'composition studies'. It maps the possible subject access points and presents research done on each kind of these. It shows how theorie of IR must build on or relate to different theories of concepts and meaning. It discusses 2 contrasting theories of semantics worked out by Ludwig Wittgenstein: 'the picture theory' and 'the theory od language games' and demonstrates the different consequences for such theories for IR. Finally, the implications for information professionals are discussed
    Source
    Knowledge organization. 25(1998) nos.1/2, S.16-31
  13. Hjoerland, B.: Arguments for philosophical realism in library and information science (2004) 0.02
    0.021725137 = product of:
      0.043450274 = sum of:
        0.025748521 = weight(_text_:information in 832) [ClassicSimilarity], result of:
          0.025748521 = score(doc=832,freq=18.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.2909321 = fieldWeight in 832, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=832)
        0.017701752 = product of:
          0.035403505 = sum of:
            0.035403505 = weight(_text_:organization in 832) [ClassicSimilarity], result of:
              0.035403505 = score(doc=832,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.19695997 = fieldWeight in 832, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=832)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The basic realist claim is that a mind-independent reality exists. It should be common sense knowledge to accept this claim, just as any theories that try to deny it soon become inconsistent because reality strikes back. In spite of this, antirealist philosophies flourish, not only in philosophy but also in the behavioral and cognitive sciences and in information science. This is highly problematic because it removes the attention from reality to subjective phenomena with no real explanatory power. Realism should not be confused with the view that all scientific claims are true or with any other kind of naiveté concerning knowledge claims. The opposite of realism may be termed antirealism, idealism, or nominalism. Although many people confuse empiricism and positivism with realism, these traditions are by nature strongly antirealist, which is why a sharp distinction should be made between empiricism and realism. Empirical research should not be founded on assumptions about "the given" of observations, but should recognize the theory-laden nature of observations. Domain analysis represents an attempt to reintroduce a realist perspective in library and information science. A realist conception of relevance, information seeking, information retrieval, and knowledge organization is outlined. Information systems of all kinds, including research libraries and public libraries, should be informed by a realist philosophy and a realist information science.
    Footnote
    Artikel in einem Themenheft: The philosophy of information
    Theme
    Information
  14. Hjoerland, B.; Hartel, J.: Introduction to a Special Issue of Knowledge Organization (2003) 0.02
    0.021304827 = product of:
      0.042609654 = sum of:
        0.016057026 = weight(_text_:information in 3013) [ClassicSimilarity], result of:
          0.016057026 = score(doc=3013,freq=28.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.18142805 = fieldWeight in 3013, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.01953125 = fieldNorm(doc=3013)
        0.026552629 = product of:
          0.053105257 = sum of:
            0.053105257 = weight(_text_:organization in 3013) [ClassicSimilarity], result of:
              0.053105257 = score(doc=3013,freq=18.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.29543996 = fieldWeight in 3013, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=3013)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    It is with very great pleasure that we introduce this special issue of Knowledge Organization on Domain Analysis (DA). Domain analysis is an approach to information science (IS) that emphasizes the social, historical, and cultural dimensions of information. It asserts that collective fields of knowledge, or "domains," form the unit of analysis of information science (IS). DA, elsewhere referred to as a sociocognitive (Hjoerland, 2002b; Jacob & Shaw, 1998) or collectivist (Talja et al, 2004) approach, is one of the major metatheoretical perspectives available to IS scholars to orient their thinking and research. DA's focus an domains stands in contrast to the alternative metatheories of cognitivism and information systems, which direct attention to psychological processes and technological processes, respectively. The first comprehensive international formulation of DA as an explicit point of view was Hjoerland and Albrechtsen (1995). However, a concern for information in the context of a community can be traced back to American library historian and visionary Jesse Shera, and is visible a century ago in the earliest practices of special librarians and European documentalists. More recently, Hjoerland (1998) produced a domain analytic study of the field of psychology; Jacob and Shaw (1998) made an important interpretation and historical review of DA; while Hjoerland (2002a) offered a seminal formulation of eleven approaches to the study of domains, receiving the ASLIB 2003 Award. Fjordback Soendergaard; Andersen and Hjoerland (2003) suggested an approach based an an updated version of the UNISIST-model of scientific communication. In fall 2003, under the conference theme of "Humanizing Information Technology" DA was featured in a keynote address at the annual meeting of the American Society for Information Science and Technology (Hjorland, 2004). These publications and events are evidence of growth in representation of the DA view. To date, informal criticism of domain analysis has followed two tracks. Firstly, that DA assumes its communities to be academic in nature, leaving much of human experience unexplored. Secondly, that there is a lack of case studies illustrating the methods of domain analytic empirical research. Importantly, this special collection marks progress by addressing both issues. In the articles that follow, domains are perceived to be hobbies, professions, and realms of popular culture. Further, other papers serve as models of different ways to execute domain analytic scholarship, whether through traditional empirical methods, or historical and philosophical techniques. Eleven authors have contributed to this special issue, and their backgrounds reflect the diversity of interest in DA. Contributors come from North America, Europe, and the Middle East. Academics from leading research universities are represented. One writer is newly retired, several are in their heyday as scholars, and some are doctoral students just entering this field. This range of perspectives enriches the collection. The first two papers in this issue are invited papers and are, in our opinion, very important. Anders Oerom was a senior lecturer at the Royal Scbool of 'Library and Information Science in Denmark, Aalborg Branch. He retired from this position an March 1, 2004, and this paper is his last contribution in this position. We are grateful that he took the time to complete "Knowledge Organization in the Domain of Art Studies - History, Transition and Conceptual Changes" in spite of many other duties. Versions of the paper have previously been presented at a Ph.D-course in knowledge organization and related versions have been published in Danish and Spanish. In many respects, it represents a model of how a domain could, or should, be investigated from the DA point of view.
    It uncovers the main theoretical influences that have affected the representation of art in systems of knowledge organization such as LCC, DDC, UDC and the Art & Architecture Thesaurus, and it provides a deep basis for evaluating such systems. Knut Tore Abrahamsen's "Indexing of Musical Genres. An Epistemological Perspective" is a modified version of a thesis written at the Royal School of Library and Information Science in Copenhagen. As a thesis it is a major achievement which successfully combines knowledge of music, epistemology, and knowledge organization. This paper may also be seen as an example of how domains can be analyzed and how knowledge organization may be improved in practice. We would like to thank Sanna Talja of the University of Tampere, among other people, for Input an this piece. And now to the rest of the issue: Olof Sundin's "Towards an Understanding of Symbolic Aspects of Professional Information: an Analysis of the Nursing Knowledge Domain" contributes to DA by introducing a deeper understanding of the notion of professions and by uncovering how in some domains, "symbolic" functions of information may be more important than instrumental functions. Rich Gazan's: "Metadata as a Realm of Translation: Merging Knowledge Domains in the Design of an Environmental Information System" demonstrates the problems of merging data collections in interdisciplinary fields, rohen the perceived informational value of different access points varies with disciplinary membership. This is important for the design of systems of metadata. Joe Tennis': "Two Axes of Domains for Domain Analysis" suggests that the notion of domain is underdeveloped in DA. Tennis states, "Hjoerland has provided a hammer, but rohere are the nails?" In addition he raises a question concerning the degree of specialization within a domain. He resolves these issues by proposing two new "axes" to DA. Chaim Zins & David Guttmann's: "Domain Analysis of Social Work: An Example of an Integrated Methodological Approach" represents an empirical approach to the construction of knowledge maps based an representative samples of the literature an social work. In a way, this paper is the most traditional or straightforward approach to knowledge organization in the issue: It suggests a concrete classification based an scientific norms of representation and objectivity.
    Hanne Albrechtsen & Annelise Mark Pejtersen's: "Cognitive Work Analysis and Work Centered Design of Classification Schemes" is also based an empirical studies, but focuses an work groups rather than literatures. It claims that deep semantic structures relevant to classification evolve dynamically in work groups. Its empirical method is different from Zins & Guttmann's. Future research must further uncover the relative strengths and weaknesses of literatures versus people in the construction of knowledge organizing systems. Jenna Hartel's: "The Serious Leisure Frontier in Library and Information Science: Hobby Domains" expands DA to the field of "everyday information use" and demonstrates that most of the approaches suggested by Hjoerland (2002a) may also be relevant to this field. Finally, Birger Hjoerland & Jenna Hartel's After-word: Some Basic Issues Related to the Notion of a Domain" suggests that the notions of ontology, epistemology, and sociology may be three fundamental dimensions of domains and that these perspectives may clarify what domains are and the dynamics of their development. While this special issue marks great progress, and the zenith of DA to date, the approach remains emergent and there is still much work to be done. We see the need for ongoing domain analytic research along two paths. Remarkably, to our knowledge no domain has been thoroughly studied in the domain analytic view. The first order, then, is rigorous application of DA to multiple domains. Second, theoretical and methodological gaps presently exist; these are opportunities for creative inventors to contribute original extensions to the approach. We warmly invite all readers to seriously engage with these articles, whether as critics, spectators, or participants in the domain analytic project.
    Source
    Knowledge organization. 30(2003) nos.3/4, S.125-127
  15. Hjoerland, B.: Semantics and knowledge organization (2007) 0.02
    0.02109987 = product of:
      0.04219974 = sum of:
        0.017165681 = weight(_text_:information in 1980) [ClassicSimilarity], result of:
          0.017165681 = score(doc=1980,freq=8.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.19395474 = fieldWeight in 1980, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1980)
        0.025034059 = product of:
          0.050068118 = sum of:
            0.050068118 = weight(_text_:organization in 1980) [ClassicSimilarity], result of:
              0.050068118 = score(doc=1980,freq=4.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.27854347 = fieldWeight in 1980, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1980)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The aim of this chapter is to demonstrate that semantic issues underlie all research questions within Library and Information Science (LIS, or, as hereafter, IS) and, in particular, the subfield known as Knowledge Organization (KO). Further, it seeks to show that semantics is a field influenced by conflicting views and discusses why it is important to argue for the most fruitful one of these. Moreover, the chapter demonstrates that IS has not yet addressed semantic problems in systematic fashion and examines why the field is very fragmented and without a proper theoretical basis. The focus here is on broad interdisciplinary issues and the long-term perspective. The theoretical problems involving semantics and concepts are very complicated. Therefore, this chapter starts by considering tools developed in KO for information retrieval (IR) as basically semantic tools. In this way, it establishes a specific IS focus on the relation between KO and semantics. It is well known that thesauri consist of a selection of concepts supplemented with information about their semantic relations (such as generic relations or "associative relations"). Some words in thesauri are "preferred terms" (descriptors), whereas others are "lead-in terms." The descriptors represent concepts. The difference between "a word" and "a concept" is that different words may have the same meaning and similar words may have different meanings, whereas one concept expresses one meaning.
    Source
    Annual review of information science and technology. 41(2007), S.367-405
  16. Hjoerland, B.; Christensen, F.S.: Work tasks and socio-cognitive relevance : a specific example (2002) 0.02
    0.020450171 = product of:
      0.040900342 = sum of:
        0.01699316 = weight(_text_:information in 5237) [ClassicSimilarity], result of:
          0.01699316 = score(doc=5237,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.1920054 = fieldWeight in 5237, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5237)
        0.023907183 = product of:
          0.047814365 = sum of:
            0.047814365 = weight(_text_:22 in 5237) [ClassicSimilarity], result of:
              0.047814365 = score(doc=5237,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.2708308 = fieldWeight in 5237, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5237)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Hjorland and Christensen provide an analyzed example in order to clarify their views on relevance. A physician's information seeking focus in dealing with mental illness is seen as largely determined by his social cognitive state, with complexity increasing as the individual's understanding of the topic deviates from mainstream thinking. The physician's viewpoint on the disease will influence terminology utilized, and an eclectic attitude toward the disease will result in more broad criteria of relevance. Relevance is seen as a tool toward meeting an individual goal.
    Date
    21. 7.2006 14:11:22
    Source
    Journal of the American Society for Information Science and Technology. 53(2002) no.11, S.960-965
  17. Hjoerland, B.: Concept theory (2009) 0.02
    0.020204907 = product of:
      0.040409815 = sum of:
        0.022708062 = weight(_text_:information in 3461) [ClassicSimilarity], result of:
          0.022708062 = score(doc=3461,freq=14.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.256578 = fieldWeight in 3461, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3461)
        0.017701752 = product of:
          0.035403505 = sum of:
            0.035403505 = weight(_text_:organization in 3461) [ClassicSimilarity], result of:
              0.035403505 = score(doc=3461,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.19695997 = fieldWeight in 3461, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3461)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Concept theory is an extremely broad, interdisciplinary and complex field of research related to many deep fields with very long historical traditions without much consensus. However, information science and knowledge organization cannot avoid relating to theories of concepts. Knowledge organizing systems (e.g., classification systems, thesauri, and ontologies) should be understood as systems basically organizing concepts and their semantic relations. The same is the case with information retrieval systems. Different theories of concepts have different implications for how to construe, evaluate, and use such systems. Based on a post-Kuhnian view of paradigms, this article put forward arguments that the best understanding and classification of theories of concepts is to view and classify them in accordance with epistemological theories (empiricism, rationalism, historicism, and pragmatism). It is also argued that the historicist and pragmatist understandings of concepts are the most fruitful views and that this understanding may be part of a broader paradigm shift that is also beginning to take place in information science. The importance of historicist and pragmatic theories of concepts for information science is outlined.
    Footnote
    Vgl.: Szostak, R.: Comment on Hjørland's concept theory in: Journal of the American Society for Information Science and Technology. 61(2010) no.5, S. 1076-1077 und die Erwiderung darauf von B. Hjoerland (S.1078-1080)
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.8, S.1519-1536
    Theme
    Information
  18. Schöpfel, J.; Farace, D.; Prost, H.; Zane, A.; Hjoerland, B.: Data documents (2021) 0.02
    0.020170141 = product of:
      0.040340282 = sum of:
        0.01029941 = weight(_text_:information in 586) [ClassicSimilarity], result of:
          0.01029941 = score(doc=586,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 586, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=586)
        0.030040871 = product of:
          0.060081743 = sum of:
            0.060081743 = weight(_text_:organization in 586) [ClassicSimilarity], result of:
              0.060081743 = score(doc=586,freq=4.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.33425218 = fieldWeight in 586, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.046875 = fieldNorm(doc=586)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This article presents and discusses different kinds of data documents, including data sets, data studies, data papers and data journals. It provides descriptive and bibliometric data on different kinds of data documents and discusses the theoretical and philosophical problems by classifying documents according to the DIKW model (data documents, information documents, knowl­edge documents and wisdom documents). Data documents are, on the one hand, an established category today, even with its own data citation index (DCI). On the other hand, data documents have blurred boundaries in relation to other kinds of documents and seem sometimes to be understood from the problematic philosophical assumption that a datum can be understood as "a single, fixed truth, valid for everyone, everywhere, at all times".
    Series
    Reviews of concepts in knowledge organization
    Source
    Knowledge organization. 48(2021) no.4, S.307-328
  19. Hjoerland, B.: Fundamentals of knowledge organization (2003) 0.02
    0.020107768 = product of:
      0.040215537 = sum of:
        0.011892734 = weight(_text_:information in 2290) [ClassicSimilarity], result of:
          0.011892734 = score(doc=2290,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.1343758 = fieldWeight in 2290, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=2290)
        0.028322803 = product of:
          0.056645606 = sum of:
            0.056645606 = weight(_text_:organization in 2290) [ClassicSimilarity], result of:
              0.056645606 = score(doc=2290,freq=8.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.31513596 = fieldWeight in 2290, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2290)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This article is organized in 10 sections: (1) Knowledge Organization (KO) is a wide interdisciplinary field, muck broader than Library and Information Science (LIS). (2) Inside LIS there have been many different approaches and traditions of KO with little mutual influence. These traditions have to a large extent been defined by new technology, for which reason the theoretical integration and underpinning has not been well considered. The most important technology-driven traditions are: a) Manual indexing and classification in libraries and reference works, b) Documentation and scientific communication, c) Information storage and retrieval by computers, d) Citation based KO and e) Full text, hypertext and Internet based approaches. These traditions taken together define very muck the special LIS focus an KO. For KO as a field of research it is important to establish a fruitful theoretical frame of reference for this overall field. This paper provides some suggestions. (3) One important theoretical distinction to consider is the one between social and intellectual forms of KO. Social forms of KO are related to professional training, disciplines and social groups while intellectual organization is related to concepts and theories in the fields to be organized. (4) The social perspective includes in addition the systems of genres and documents as well as the social system of knowledge Producers, knowledge intermediaries and knowledge users. (5) This social system of documents, genres and agents makes available a very complicated structure of potential subject access points (SAPs), which may be used in information retrieval (IR). The basic alm of research in KO is to develop knowledge an how to optimise this system of SAPs and its utilization in IR. (6) SAPs may be seen as signs, and their production and use may be understood from a social semiotic point of view. (7) The concept of paradigms is also helpful because different groups and interests tend to be organized according to a paradigm and to develop different criteria of relevance, and thus different criteria of likeliness in KO. (8) The basic unit in KO is the semantic relation between two concepts, and such relations are embedded in theories. (9) In classification like things are grouped together, but what is considered similar is not a trivial question. (10) The paper concludes with the considering of methods for KO. Basically the methods of any field are connected with epistemological theories. This is also the case with KO. The existing methods as described in the literature of KO fit into a classification of basic epistemological views. The debate about the methods of KO at the deepest level therefore implies an epistemological discussion.
    Source
    Knowledge organization. 30(2003) no.2, S.87-111
  20. Hjoerland, B.: Science, Part I : basic conceptions of science and the scientific method (2021) 0.02
    0.019621588 = product of:
      0.039243177 = sum of:
        0.008582841 = weight(_text_:information in 594) [ClassicSimilarity], result of:
          0.008582841 = score(doc=594,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.09697737 = fieldWeight in 594, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=594)
        0.030660335 = product of:
          0.06132067 = sum of:
            0.06132067 = weight(_text_:organization in 594) [ClassicSimilarity], result of:
              0.06132067 = score(doc=594,freq=6.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.34114468 = fieldWeight in 594, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=594)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This article is the first in a trilogy about the concept "science". Section 1 considers the historical development of the meaning of the term science and shows its close relation to the terms "knowl­edge" and "philosophy". Section 2 presents four historic phases in the basic conceptualizations of science (1) science as representing absolute certain of knowl­edge based on deductive proof; (2) science as representing absolute certain of knowl­edge based on "the scientific method"; (3) science as representing fallible knowl­edge based on "the scientific method"; (4) science without a belief in "the scientific method" as constitutive, hence the question about the nature of science becomes dramatic. Section 3 presents four basic understandings of the scientific method: Rationalism, which gives priority to a priori thinking; empiricism, which gives priority to the collection, description, and processing of data in a neutral way; historicism, which gives priority to the interpretation of data in the light of "paradigm" and pragmatism, which emphasizes the analysis of the purposes, consequences, and the interests of knowl­edge. The second article in the trilogy focus on different fields studying science, while the final article presets further developments in the concept of science and the general conclusion. Overall, the trilogy illuminates the most important tensions in different conceptualizations of science and argues for the role of information science and knowl­edge organization in the study of science and suggests how "science" should be understood as an object of research in these fields.
    Footnote
    Beitrag in einem Special issue on 'Science and knowledge organization' mit längeren Überblicken zu wichtigen Begriffen der Wissensorgansiation.
    Source
    Knowledge organization. 48(2021) no.7/8, S.473-498