Search (137 results, page 1 of 7)

  • × theme_ss:"Data Mining"
  1. Cohen, D.J.: From Babel to knowledge : data mining large digital collections (2006) 0.03
    0.03036432 = product of:
      0.0759108 = sum of:
        0.05623238 = weight(_text_:philosophy in 1178) [ClassicSimilarity], result of:
          0.05623238 = score(doc=1178,freq=2.0), product of:
            0.23055021 = queryWeight, product of:
              5.5189433 = idf(docFreq=481, maxDocs=44218)
              0.04177434 = queryNorm
            0.24390514 = fieldWeight in 1178, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.5189433 = idf(docFreq=481, maxDocs=44218)
              0.03125 = fieldNorm(doc=1178)
        0.019678416 = weight(_text_:of in 1178) [ClassicSimilarity], result of:
          0.019678416 = score(doc=1178,freq=38.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.30123898 = fieldWeight in 1178, product of:
              6.164414 = tf(freq=38.0), with freq of:
                38.0 = termFreq=38.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=1178)
      0.4 = coord(2/5)
    
    Abstract
    In Jorge Luis Borges's curious short story The Library of Babel, the narrator describes an endless collection of books stored from floor to ceiling in a labyrinth of countless hexagonal rooms. The pages of the library's books seem to contain random sequences of letters and spaces; occasionally a few intelligible words emerge in the sea of paper and ink. Nevertheless, readers diligently, and exasperatingly, scan the shelves for coherent passages. The narrator himself has wandered numerous rooms in search of enlightenment, but with resignation he simply awaits his death and burial - which Borges explains (with signature dark humor) consists of being tossed unceremoniously over the library's banister. Borges's nightmare, of course, is a cursed vision of the research methods of disciplines such as literature, history, and philosophy, where the careful reading of books, one after the other, is supposed to lead inexorably to knowledge and understanding. Computer scientists would approach Borges's library far differently. Employing the information theory that forms the basis for search engines and other computerized techniques for assessing in one fell swoop large masses of documents, they would quickly realize the collection's incoherence though sampling and statistical methods - and wisely start looking for the library's exit. These computational methods, which allow us to find patterns, determine relationships, categorize documents, and extract information from massive corpuses, will form the basis for new tools for research in the humanities and other disciplines in the coming decade. For the past three years I have been experimenting with how to provide such end-user tools - that is, tools that harness the power of vast electronic collections while hiding much of their complicated technical plumbing. In particular, I have made extensive use of the application programming interfaces (APIs) the leading search engines provide for programmers to query their databases directly (from server to server without using their web interfaces). In addition, I have explored how one might extract information from large digital collections, from the well-curated lexicographic database WordNet to the democratic (and poorly curated) online reference work Wikipedia. While processing these digital corpuses is currently an imperfect science, even now useful tools can be created by combining various collections and methods for searching and analyzing them. And more importantly, these nascent services suggest a future in which information can be gleaned from, and sense can be made out of, even imperfect digital libraries of enormous scale. A brief examination of two approaches to data mining large digital collections hints at this future, while also providing some lessons about how to get there.
  2. Fenstermacher, K.D.; Ginsburg, M.: Client-side monitoring for Web mining (2003) 0.03
    0.026994044 = product of:
      0.06748511 = sum of:
        0.013543615 = weight(_text_:of in 1611) [ClassicSimilarity], result of:
          0.013543615 = score(doc=1611,freq=8.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.20732689 = fieldWeight in 1611, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1611)
        0.053941496 = product of:
          0.10788299 = sum of:
            0.10788299 = weight(_text_:mind in 1611) [ClassicSimilarity], result of:
              0.10788299 = score(doc=1611,freq=2.0), product of:
                0.2607373 = queryWeight, product of:
                  6.241566 = idf(docFreq=233, maxDocs=44218)
                  0.04177434 = queryNorm
                0.41376126 = fieldWeight in 1611, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  6.241566 = idf(docFreq=233, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1611)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    "Garbage in, garbage out" is a well-known phrase in computer analysis, and one that comes to mind when mining Web data to draw conclusions about Web users. The challenge is that data analysts wish to infer patterns of client-side behavior from server-side data. However, because only a fraction of the user's actions ever reaches the Web server, analysts must rely an incomplete data. In this paper, we propose a client-side monitoring system that is unobtrusive and supports flexible data collection. Moreover, the proposed framework encompasses client-side applications beyond the Web browser. Expanding monitoring beyond the browser to incorporate standard office productivity tools enables analysts to derive a much richer and more accurate picture of user behavior an the Web.
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.7, S.625-637
  3. Jones, K.M.L.; Rubel, A.; LeClere, E.: ¬A matter of trust : higher education institutions as information fiduciaries in an age of educational data mining and learning analytics (2020) 0.02
    0.023509657 = product of:
      0.058774143 = sum of:
        0.013822895 = weight(_text_:of in 5968) [ClassicSimilarity], result of:
          0.013822895 = score(doc=5968,freq=12.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.21160212 = fieldWeight in 5968, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5968)
        0.04495125 = product of:
          0.0899025 = sum of:
            0.0899025 = weight(_text_:mind in 5968) [ClassicSimilarity], result of:
              0.0899025 = score(doc=5968,freq=2.0), product of:
                0.2607373 = queryWeight, product of:
                  6.241566 = idf(docFreq=233, maxDocs=44218)
                  0.04177434 = queryNorm
                0.34480107 = fieldWeight in 5968, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  6.241566 = idf(docFreq=233, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5968)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Higher education institutions are mining and analyzing student data to effect educational, political, and managerial outcomes. Done under the banner of "learning analytics," this work can-and often does-surface sensitive data and information about, inter alia, a student's demographics, academic performance, offline and online movements, physical fitness, mental wellbeing, and social network. With these data, institutions and third parties are able to describe student life, predict future behaviors, and intervene to address academic or other barriers to student success (however defined). Learning analytics, consequently, raise serious issues concerning student privacy, autonomy, and the appropriate flow of student data. We argue that issues around privacy lead to valid questions about the degree to which students should trust their institution to use learning analytics data and other artifacts (algorithms, predictive scores) with their interests in mind. We argue that higher education institutions are paradigms of information fiduciaries. As such, colleges and universities have a special responsibility to their students. In this article, we use the information fiduciary concept to analyze cases when learning analytics violate an institution's responsibility to its students.
    Source
    Journal of the Association for Information Science and Technology. 71(2020) no.10, S.1227-1241
  4. KDD : techniques and applications (1998) 0.02
    0.019001076 = product of:
      0.04750269 = sum of:
        0.013543615 = weight(_text_:of in 6783) [ClassicSimilarity], result of:
          0.013543615 = score(doc=6783,freq=2.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.20732689 = fieldWeight in 6783, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.09375 = fieldNorm(doc=6783)
        0.033959076 = product of:
          0.06791815 = sum of:
            0.06791815 = weight(_text_:22 in 6783) [ClassicSimilarity], result of:
              0.06791815 = score(doc=6783,freq=2.0), product of:
                0.14628662 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04177434 = queryNorm
                0.46428138 = fieldWeight in 6783, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6783)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Footnote
    A special issue of selected papers from the Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD'97), held Singapore, 22-23 Feb 1997
  5. Hofstede, A.H.M. ter; Proper, H.A.; Van der Weide, T.P.: Exploiting fact verbalisation in conceptual information modelling (1997) 0.02
    0.016284827 = product of:
      0.040712066 = sum of:
        0.020902606 = weight(_text_:of in 2908) [ClassicSimilarity], result of:
          0.020902606 = score(doc=2908,freq=14.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.31997898 = fieldWeight in 2908, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2908)
        0.019809462 = product of:
          0.039618924 = sum of:
            0.039618924 = weight(_text_:22 in 2908) [ClassicSimilarity], result of:
              0.039618924 = score(doc=2908,freq=2.0), product of:
                0.14628662 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04177434 = queryNorm
                0.2708308 = fieldWeight in 2908, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2908)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Focuses on the information modelling side of conceptual modelling. Deals with the exploitation of fact verbalisations after finishing the actual information system. Verbalisations are used as input for the design of the so-called information model. Exploits these verbalisation in 4 directions: considers their use for a conceptual query language, the verbalisation of instances, the description of the contents of a database and for the verbalisation of queries in a computer supported query environment. Provides an example session with an envisioned tool for end user query formulations that exploits the verbalisation
    Source
    Information systems. 22(1997) nos.5/6, S.349-385
  6. Matson, L.D.; Bonski, D.J.: Do digital libraries need librarians? (1997) 0.02
    0.016279016 = product of:
      0.040697537 = sum of:
        0.018058153 = weight(_text_:of in 1737) [ClassicSimilarity], result of:
          0.018058153 = score(doc=1737,freq=8.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.27643585 = fieldWeight in 1737, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=1737)
        0.022639386 = product of:
          0.045278773 = sum of:
            0.045278773 = weight(_text_:22 in 1737) [ClassicSimilarity], result of:
              0.045278773 = score(doc=1737,freq=2.0), product of:
                0.14628662 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04177434 = queryNorm
                0.30952093 = fieldWeight in 1737, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1737)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Defines digital libraries and discusses the effects of new technology on librarians. Examines the different viewpoints of librarians and information technologists on digital libraries. Describes the development of a digital library at the National Drug Intelligence Center, USA, which was carried out in collaboration with information technology experts. The system is based on Web enabled search technology to find information, data visualization and data mining to visualize it and use of SGML as an information standard to store it
    Date
    22.11.1998 18:57:22
  7. Kong, S.; Ye, F.; Feng, L.; Zhao, Z.: Towards the prediction problems of bursting hashtags on Twitter (2015) 0.02
    0.015603599 = product of:
      0.039008997 = sum of:
        0.011641062 = product of:
          0.05820531 = sum of:
            0.05820531 = weight(_text_:problem in 2338) [ClassicSimilarity], result of:
              0.05820531 = score(doc=2338,freq=2.0), product of:
                0.17731056 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.04177434 = queryNorm
                0.3282676 = fieldWeight in 2338, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2338)
          0.2 = coord(1/5)
        0.027367935 = weight(_text_:of in 2338) [ClassicSimilarity], result of:
          0.027367935 = score(doc=2338,freq=24.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.41895083 = fieldWeight in 2338, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2338)
      0.4 = coord(2/5)
    
    Abstract
    Hundreds of thousands of hashtags are generated every day on Twitter. Only a few will burst and become trending topics. In this article, we provide the definition of a bursting hashtag and conduct a systematic study of a series of challenging prediction problems that span the entire life cycles of bursting hashtags. Around the problem of "how to build a system to predict bursting hashtags," we explore different types of features and present machine learning solutions. On real data sets from Twitter, experiments are conducted to evaluate the effectiveness of the proposed solutions and the contributions of features.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.12, S.2566-2579
  8. Fonseca, F.; Marcinkowski, M.; Davis, C.: Cyber-human systems of thought and understanding (2019) 0.02
    0.015236628 = product of:
      0.03809157 = sum of:
        0.023941955 = weight(_text_:of in 5011) [ClassicSimilarity], result of:
          0.023941955 = score(doc=5011,freq=36.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.36650562 = fieldWeight in 5011, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5011)
        0.0141496165 = product of:
          0.028299233 = sum of:
            0.028299233 = weight(_text_:22 in 5011) [ClassicSimilarity], result of:
              0.028299233 = score(doc=5011,freq=2.0), product of:
                0.14628662 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04177434 = queryNorm
                0.19345059 = fieldWeight in 5011, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5011)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The present challenge faced by scientists working with Big Data comes in the overwhelming volume and level of detail provided by current data sets. Exceeding traditional empirical approaches, Big Data opens a new perspective on scientific work in which data comes to play a role in the development of the scientific problematic to be developed. Addressing this reconfiguration of our relationship with data through readings of Wittgenstein, Macherey, and Popper, we propose a picture of science that encourages scientists to engage with the data in a direct way, using the data itself as an instrument for scientific investigation. Using GIS as a theme, we develop the concept of cyber-human systems of thought and understanding to bridge the divide between representative (theoretical) thinking and (non-theoretical) data-driven science. At the foundation of these systems, we invoke the concept of the "semantic pixel" to establish a logical and virtual space linking data and the work of scientists. It is with this discussion of the relationship between analysts in their pursuit of knowledge and the rise of Big Data that this present discussion of the philosophical foundations of Big Data addresses the central questions raised by social informatics research.
    Date
    7. 3.2019 16:32:22
    Footnote
    Beitrag eines Special issue on social informatics of knowledge
    Source
    Journal of the Association for Information Science and Technology. 70(2019) no.4, S.402-411
  9. Fayyad, U.M.; Djorgovski, S.G.; Weir, N.: From digitized images to online catalogs : data ming a sky server (1996) 0.01
    0.01416828 = product of:
      0.0354207 = sum of:
        0.0133040715 = product of:
          0.066520356 = sum of:
            0.066520356 = weight(_text_:problem in 6625) [ClassicSimilarity], result of:
              0.066520356 = score(doc=6625,freq=2.0), product of:
                0.17731056 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.04177434 = queryNorm
                0.375163 = fieldWeight in 6625, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6625)
          0.2 = coord(1/5)
        0.02211663 = weight(_text_:of in 6625) [ClassicSimilarity], result of:
          0.02211663 = score(doc=6625,freq=12.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.33856338 = fieldWeight in 6625, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=6625)
      0.4 = coord(2/5)
    
    Abstract
    Offers a data mining approach based on machine learning classification methods to the problem of automated cataloguing of online databases of digital images resulting from sky surveys. The SKICAT system automates the reduction and analysis of 3 terabytes of images expected to contain about 2 billion sky objects. It offers a solution to problems associated with the analysis of large data sets in science
  10. Vaughan, L.; Chen, Y.: Data mining from web search queries : a comparison of Google trends and Baidu index (2015) 0.01
    0.013479257 = product of:
      0.03369814 = sum of:
        0.019548526 = weight(_text_:of in 1605) [ClassicSimilarity], result of:
          0.019548526 = score(doc=1605,freq=24.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.2992506 = fieldWeight in 1605, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1605)
        0.0141496165 = product of:
          0.028299233 = sum of:
            0.028299233 = weight(_text_:22 in 1605) [ClassicSimilarity], result of:
              0.028299233 = score(doc=1605,freq=2.0), product of:
                0.14628662 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04177434 = queryNorm
                0.19345059 = fieldWeight in 1605, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1605)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Numerous studies have explored the possibility of uncovering information from web search queries but few have examined the factors that affect web query data sources. We conducted a study that investigated this issue by comparing Google Trends and Baidu Index. Data from these two services are based on queries entered by users into Google and Baidu, two of the largest search engines in the world. We first compared the features and functions of the two services based on documents and extensive testing. We then carried out an empirical study that collected query volume data from the two sources. We found that data from both sources could be used to predict the quality of Chinese universities and companies. Despite the differences between the two services in terms of technology, such as differing methods of language processing, the search volume data from the two were highly correlated and combining the two data sources did not improve the predictive power of the data. However, there was a major difference between the two in terms of data availability. Baidu Index was able to provide more search volume data than Google Trends did. Our analysis showed that the disadvantage of Google Trends in this regard was due to Google's smaller user base in China. The implication of this finding goes beyond China. Google's user bases in many countries are smaller than that in China, so the search volume data related to those countries could result in the same issue as that related to China.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.1, S.13-22
  11. Deogun, J.S.: Feature selection and effective classifiers (1998) 0.01
    0.01297504 = product of:
      0.0324376 = sum of:
        0.009978054 = product of:
          0.04989027 = sum of:
            0.04989027 = weight(_text_:problem in 2911) [ClassicSimilarity], result of:
              0.04989027 = score(doc=2911,freq=2.0), product of:
                0.17731056 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.04177434 = queryNorm
                0.28137225 = fieldWeight in 2911, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2911)
          0.2 = coord(1/5)
        0.022459546 = weight(_text_:of in 2911) [ClassicSimilarity], result of:
          0.022459546 = score(doc=2911,freq=22.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.34381276 = fieldWeight in 2911, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2911)
      0.4 = coord(2/5)
    
    Abstract
    Develops and analyzes 4 algorithms for feature selection in the context of rough set methodology. Develops the notion of accuracy of classification that can be used for upper or lower classification methods and defines the feature selection problem. Presents a discussion of upper classifiers and develops 4 features selection heuristics and discusses the family of stepwise backward selection algorithms. Analyzes the worst case time complexity in all algorithms presented. Discusses details of the experiments and results of using a family of stepwise backward selection learning data sets and a duodenal ulcer data set. Includes the experimental setup and results of comparison of lower classifiers and upper classiers on the duodenal ulcer data set. Discusses exteded decision tables
    Source
    Journal of the American Society for Information Science. 49(1998) no.5, S.423-434
  12. Hallonsten, O.; Holmberg, D.: Analyzing structural stratification in the Swedish higher education system : data contextualization with policy-history analysis (2013) 0.01
    0.012797958 = product of:
      0.031994894 = sum of:
        0.017845279 = weight(_text_:of in 668) [ClassicSimilarity], result of:
          0.017845279 = score(doc=668,freq=20.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.27317715 = fieldWeight in 668, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=668)
        0.0141496165 = product of:
          0.028299233 = sum of:
            0.028299233 = weight(_text_:22 in 668) [ClassicSimilarity], result of:
              0.028299233 = score(doc=668,freq=2.0), product of:
                0.14628662 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04177434 = queryNorm
                0.19345059 = fieldWeight in 668, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=668)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    20th century massification of higher education and research in academia is said to have produced structurally stratified higher education systems in many countries. Most manifestly, the research mission of universities appears to be divisive. Authors have claimed that the Swedish system, while formally unified, has developed into a binary state, and statistics seem to support this conclusion. This article makes use of a comprehensive statistical data source on Swedish higher education institutions to illustrate stratification, and uses literature on Swedish research policy history to contextualize the statistics. Highlighting the opportunities as well as constraints of the data, the article argues that there is great merit in combining statistics with a qualitative analysis when studying the structural characteristics of national higher education systems. Not least the article shows that it is an over-simplification to describe the Swedish system as binary; the stratification is more complex. On basis of the analysis, the article also argues that while global trends certainly influence national developments, higher education systems have country-specific features that may enrich the understanding of how systems evolve and therefore should be analyzed as part of a broader study of the increasingly globalized academic system.
    Date
    22. 3.2013 19:43:01
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.3, S.574-586
  13. Amir, A.; Feldman, R.; Kashi, R.: ¬A new and versatile method for association generation (1997) 0.01
    0.012667385 = product of:
      0.03166846 = sum of:
        0.009029076 = weight(_text_:of in 1270) [ClassicSimilarity], result of:
          0.009029076 = score(doc=1270,freq=2.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.13821793 = fieldWeight in 1270, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=1270)
        0.022639386 = product of:
          0.045278773 = sum of:
            0.045278773 = weight(_text_:22 in 1270) [ClassicSimilarity], result of:
              0.045278773 = score(doc=1270,freq=2.0), product of:
                0.14628662 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04177434 = queryNorm
                0.30952093 = fieldWeight in 1270, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1270)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Current algorithms for finding associations among the attributes describing data in a database have a number of shortcomings. Presents a novel method for association generation, that answers all desiderata. The method is different from all existing algorithms and especially suitable to textual databases with binary attributes. Uses subword trees for quick indexing into the required database statistics. Tests the algorithm on the Reuters-22173 database with satisfactory results
    Source
    Information systems. 22(1997) nos.5/6, S.333-347
  14. Sarnikar, S.; Zhang, Z.; Zhao, J.L.: Query-performance prediction for effective query routing in domain-specific repositories (2014) 0.01
    0.01211739 = product of:
      0.030293474 = sum of:
        0.009978054 = product of:
          0.04989027 = sum of:
            0.04989027 = weight(_text_:problem in 1326) [ClassicSimilarity], result of:
              0.04989027 = score(doc=1326,freq=2.0), product of:
                0.17731056 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.04177434 = queryNorm
                0.28137225 = fieldWeight in 1326, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1326)
          0.2 = coord(1/5)
        0.02031542 = weight(_text_:of in 1326) [ClassicSimilarity], result of:
          0.02031542 = score(doc=1326,freq=18.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.3109903 = fieldWeight in 1326, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1326)
      0.4 = coord(2/5)
    
    Abstract
    The effective use of corporate memory is becoming increasingly important because every aspect of e-business requires access to information repositories. Unfortunately, less-than-satisfying effectiveness in state-of-the-art information-retrieval techniques is well known, even for some of the best search engines such as Google. In this study, the authors resolve this retrieval ineffectiveness problem by developing a new framework for predicting query performance, which is the first step toward better retrieval effectiveness. Specifically, they examine the relationship between query performance and query context. A query context consists of the query itself, the document collection, and the interaction between the two. The authors first analyze the characteristics of query context and develop various features for predicting query performance. Then, they propose a context-sensitive model for predicting query performance based on the characteristics of the query and the document collection. Finally, they validate this model with respect to five real-world collections of documents and demonstrate its utility in routing queries to the correct repository with high accuracy.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.8, S.1597-1614
  15. Chen, H.; Chau, M.: Web mining : machine learning for Web applications (2003) 0.01
    0.0116526475 = product of:
      0.029131617 = sum of:
        0.009978054 = product of:
          0.04989027 = sum of:
            0.04989027 = weight(_text_:problem in 4242) [ClassicSimilarity], result of:
              0.04989027 = score(doc=4242,freq=2.0), product of:
                0.17731056 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.04177434 = queryNorm
                0.28137225 = fieldWeight in 4242, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4242)
          0.2 = coord(1/5)
        0.019153563 = weight(_text_:of in 4242) [ClassicSimilarity], result of:
          0.019153563 = score(doc=4242,freq=16.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.2932045 = fieldWeight in 4242, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4242)
      0.4 = coord(2/5)
    
    Abstract
    With more than two billion pages created by millions of Web page authors and organizations, the World Wide Web is a tremendously rich knowledge base. The knowledge comes not only from the content of the pages themselves, but also from the unique characteristics of the Web, such as its hyperlink structure and its diversity of content and languages. Analysis of these characteristics often reveals interesting patterns and new knowledge. Such knowledge can be used to improve users' efficiency and effectiveness in searching for information an the Web, and also for applications unrelated to the Web, such as support for decision making or business management. The Web's size and its unstructured and dynamic content, as well as its multilingual nature, make the extraction of useful knowledge a challenging research problem. Furthermore, the Web generates a large amount of data in other formats that contain valuable information. For example, Web server logs' information about user access patterns can be used for information personalization or improving Web page design.
    Source
    Annual review of information science and technology. 38(2004), S.289-330
  16. Liu, Y.; Huang, X.; An, A.: Personalized recommendation with adaptive mixture of markov models (2007) 0.01
    0.011464718 = product of:
      0.028661795 = sum of:
        0.008315044 = product of:
          0.041575223 = sum of:
            0.041575223 = weight(_text_:problem in 606) [ClassicSimilarity], result of:
              0.041575223 = score(doc=606,freq=2.0), product of:
                0.17731056 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.04177434 = queryNorm
                0.23447686 = fieldWeight in 606, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=606)
          0.2 = coord(1/5)
        0.02034675 = weight(_text_:of in 606) [ClassicSimilarity], result of:
          0.02034675 = score(doc=606,freq=26.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.31146988 = fieldWeight in 606, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=606)
      0.4 = coord(2/5)
    
    Abstract
    With more and more information available on the Internet, the task of making personalized recommendations to assist the user's navigation has become increasingly important. Considering there might be millions of users with different backgrounds accessing a Web site everyday, it is infeasible to build a separate recommendation system for each user. To address this problem, clustering techniques can first be employed to discover user groups. Then, user navigation patterns for each group can be discovered, to allow the adaptation of a Web site to the interest of each individual group. In this paper, we propose to model user access sequences as stochastic processes, and a mixture of Markov models based approach is taken to cluster users and to capture the sequential relationships inherent in user access histories. Several important issues that arise in constructing the Markov models are also addressed. The first issue lies in the complexity of the mixture of Markov models. To improve the efficiency of building/maintaining the mixture of Markov models, we develop a lightweight adapt-ive algorithm to update the model parameters without recomputing model parameters from scratch. The second issue concerns the proper selection of training data for building the mixture of Markov models. We investigate two different training data selection strategies and perform extensive experiments to compare their effectiveness on a real dataset that is generated by a Web-based knowledge management system, Livelink.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.12, S.1851-1870
  17. Ma, Z.; Sun, A.; Cong, G.: On predicting the popularity of newly emerging hashtags in Twitter (2013) 0.01
    0.010464129 = product of:
      0.026160322 = sum of:
        0.008315044 = product of:
          0.041575223 = sum of:
            0.041575223 = weight(_text_:problem in 967) [ClassicSimilarity], result of:
              0.041575223 = score(doc=967,freq=2.0), product of:
                0.17731056 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.04177434 = queryNorm
                0.23447686 = fieldWeight in 967, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=967)
          0.2 = coord(1/5)
        0.017845279 = weight(_text_:of in 967) [ClassicSimilarity], result of:
          0.017845279 = score(doc=967,freq=20.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.27317715 = fieldWeight in 967, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=967)
      0.4 = coord(2/5)
    
    Abstract
    Because of Twitter's popularity and the viral nature of information dissemination on Twitter, predicting which Twitter topics will become popular in the near future becomes a task of considerable economic importance. Many Twitter topics are annotated by hashtags. In this article, we propose methods to predict the popularity of new hashtags on Twitter by formulating the problem as a classification task. We use five standard classification models (i.e., Naïve bayes, k-nearest neighbors, decision trees, support vector machines, and logistic regression) for prediction. The main challenge is the identification of effective features for describing new hashtags. We extract 7 content features from a hashtag string and the collection of tweets containing the hashtag and 11 contextual features from the social graph formed by users who have adopted the hashtag. We conducted experiments on a Twitter data set consisting of 31 million tweets from 2 million Singapore-based users. The experimental results show that the standard classifiers using the extracted features significantly outperform the baseline methods that do not use these features. Among the five classifiers, the logistic regression model performs the best in terms of the Micro-F1 measure. We also observe that contextual features are more effective than content features.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.7, S.1399-1410
  18. Information visualization in data mining and knowledge discovery (2002) 0.01
    0.010083349 = product of:
      0.025208373 = sum of:
        0.019548526 = weight(_text_:of in 1789) [ClassicSimilarity], result of:
          0.019548526 = score(doc=1789,freq=150.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.2992506 = fieldWeight in 1789, product of:
              12.247449 = tf(freq=150.0), with freq of:
                150.0 = termFreq=150.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.015625 = fieldNorm(doc=1789)
        0.0056598466 = product of:
          0.011319693 = sum of:
            0.011319693 = weight(_text_:22 in 1789) [ClassicSimilarity], result of:
              0.011319693 = score(doc=1789,freq=2.0), product of:
                0.14628662 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04177434 = queryNorm
                0.07738023 = fieldWeight in 1789, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.015625 = fieldNorm(doc=1789)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Date
    23. 3.2008 19:10:22
    Footnote
    Rez. in: JASIST 54(2003) no.9, S.905-906 (C.A. Badurek): "Visual approaches for knowledge discovery in very large databases are a prime research need for information scientists focused an extracting meaningful information from the ever growing stores of data from a variety of domains, including business, the geosciences, and satellite and medical imagery. This work presents a summary of research efforts in the fields of data mining, knowledge discovery, and data visualization with the goal of aiding the integration of research approaches and techniques from these major fields. The editors, leading computer scientists from academia and industry, present a collection of 32 papers from contributors who are incorporating visualization and data mining techniques through academic research as well application development in industry and government agencies. Information Visualization focuses upon techniques to enhance the natural abilities of humans to visually understand data, in particular, large-scale data sets. It is primarily concerned with developing interactive graphical representations to enable users to more intuitively make sense of multidimensional data as part of the data exploration process. It includes research from computer science, psychology, human-computer interaction, statistics, and information science. Knowledge Discovery in Databases (KDD) most often refers to the process of mining databases for previously unknown patterns and trends in data. Data mining refers to the particular computational methods or algorithms used in this process. The data mining research field is most related to computational advances in database theory, artificial intelligence and machine learning. This work compiles research summaries from these main research areas in order to provide "a reference work containing the collection of thoughts and ideas of noted researchers from the fields of data mining and data visualization" (p. 8). It addresses these areas in three main sections: the first an data visualization, the second an KDD and model visualization, and the last an using visualization in the knowledge discovery process. The seven chapters of Part One focus upon methodologies and successful techniques from the field of Data Visualization. Hoffman and Grinstein (Chapter 2) give a particularly good overview of the field of data visualization and its potential application to data mining. An introduction to the terminology of data visualization, relation to perceptual and cognitive science, and discussion of the major visualization display techniques are presented. Discussion and illustration explain the usefulness and proper context of such data visualization techniques as scatter plots, 2D and 3D isosurfaces, glyphs, parallel coordinates, and radial coordinate visualizations. Remaining chapters present the need for standardization of visualization methods, discussion of user requirements in the development of tools, and examples of using information visualization in addressing research problems.
    In 13 chapters, Part Two provides an introduction to KDD, an overview of data mining techniques, and examples of the usefulness of data model visualizations. The importance of visualization throughout the KDD process is stressed in many of the chapters. In particular, the need for measures of visualization effectiveness, benchmarking for identifying best practices, and the use of standardized sample data sets is convincingly presented. Many of the important data mining approaches are discussed in this complementary context. Cluster and outlier detection, classification techniques, and rule discovery algorithms are presented as the basic techniques common to the KDD process. The potential effectiveness of using visualization in the data modeling process are illustrated in chapters focused an using visualization for helping users understand the KDD process, ask questions and form hypotheses about their data, and evaluate the accuracy and veracity of their results. The 11 chapters of Part Three provide an overview of the KDD process and successful approaches to integrating KDD, data mining, and visualization in complementary domains. Rhodes (Chapter 21) begins this section with an excellent overview of the relation between the KDD process and data mining techniques. He states that the "primary goals of data mining are to describe the existing data and to predict the behavior or characteristics of future data of the same type" (p. 281). These goals are met by data mining tasks such as classification, regression, clustering, summarization, dependency modeling, and change or deviation detection. Subsequent chapters demonstrate how visualization can aid users in the interactive process of knowledge discovery by graphically representing the results from these iterative tasks. Finally, examples of the usefulness of integrating visualization and data mining tools in the domain of business, imagery and text mining, and massive data sets are provided. This text concludes with a thorough and useful 17-page index and lengthy yet integrating 17-page summary of the academic and industrial backgrounds of the contributing authors. A 16-page set of color inserts provide a better representation of the visualizations discussed, and a URL provided suggests that readers may view all the book's figures in color on-line, although as of this submission date it only provides access to a summary of the book and its contents. The overall contribution of this work is its focus an bridging two distinct areas of research, making it a valuable addition to the Morgan Kaufmann Series in Database Management Systems. The editors of this text have met their main goal of providing the first textbook integrating knowledge discovery, data mining, and visualization. Although it contributes greatly to our under- standing of the development and current state of the field, a major weakness of this text is that there is no concluding chapter to discuss the contributions of the sum of these contributed papers or give direction to possible future areas of research. "Integration of expertise between two different disciplines is a difficult process of communication and reeducation. Integrating data mining and visualization is particularly complex because each of these fields in itself must draw an a wide range of research experience" (p. 300). Although this work contributes to the crossdisciplinary communication needed to advance visualization in KDD, a more formal call for an interdisciplinary research agenda in a concluding chapter would have provided a more satisfying conclusion to a very good introductory text.
    With contributors almost exclusively from the computer science field, the intended audience of this work is heavily slanted towards a computer science perspective. However, it is highly readable and provides introductory material that would be useful to information scientists from a variety of domains. Yet, much interesting work in information visualization from other fields could have been included giving the work more of an interdisciplinary perspective to complement their goals of integrating work in this area. Unfortunately, many of the application chapters are these, shallow, and lack complementary illustrations of visualization techniques or user interfaces used. However, they do provide insight into the many applications being developed in this rapidly expanding field. The authors have successfully put together a highly useful reference text for the data mining and information visualization communities. Those interested in a good introduction and overview of complementary research areas in these fields will be satisfied with this collection of papers. The focus upon integrating data visualization with data mining complements texts in each of these fields, such as Advances in Knowledge Discovery and Data Mining (Fayyad et al., MIT Press) and Readings in Information Visualization: Using Vision to Think (Card et. al., Morgan Kauffman). This unique work is a good starting point for future interaction between researchers in the fields of data visualization and data mining and makes a good accompaniment for a course focused an integrating these areas or to the main reference texts in these fields."
  19. Dang, X.H.; Ong. K.-L.: Knowledge discovery in data streams (2009) 0.01
    0.010048111 = product of:
      0.025120277 = sum of:
        0.009978054 = product of:
          0.04989027 = sum of:
            0.04989027 = weight(_text_:problem in 3829) [ClassicSimilarity], result of:
              0.04989027 = score(doc=3829,freq=2.0), product of:
                0.17731056 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.04177434 = queryNorm
                0.28137225 = fieldWeight in 3829, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3829)
          0.2 = coord(1/5)
        0.015142222 = weight(_text_:of in 3829) [ClassicSimilarity], result of:
          0.015142222 = score(doc=3829,freq=10.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.23179851 = fieldWeight in 3829, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3829)
      0.4 = coord(2/5)
    
    Abstract
    Knowing what to do with the massive amount of data collected has always been an ongoing issue for many organizations. While data mining has been touted to be the solution, it has failed to deliver the impact despite its successes in many areas. One reason is that data mining algorithms were not designed for the real world, i.e., they usually assume a static view of the data and a stable execution environment where resourcesare abundant. The reality however is that data are constantly changing and the execution environment is dynamic. Hence, it becomes difficult for data mining to truly deliver timely and relevant results. Recently, the processing of stream data has received many attention. What is interesting is that the methodology to design stream-based algorithms may well be the solution to the above problem. In this entry, we discuss this issue and present an overview of recent works.
    Source
    Encyclopedia of library and information sciences. 3rd ed. Ed.: M.J. Bates
  20. Qiu, X.Y.; Srinivasan, P.; Hu, Y.: Supervised learning models to predict firm performance with annual reports : an empirical study (2014) 0.01
    0.010048111 = product of:
      0.025120277 = sum of:
        0.009978054 = product of:
          0.04989027 = sum of:
            0.04989027 = weight(_text_:problem in 1205) [ClassicSimilarity], result of:
              0.04989027 = score(doc=1205,freq=2.0), product of:
                0.17731056 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.04177434 = queryNorm
                0.28137225 = fieldWeight in 1205, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1205)
          0.2 = coord(1/5)
        0.015142222 = weight(_text_:of in 1205) [ClassicSimilarity], result of:
          0.015142222 = score(doc=1205,freq=10.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.23179851 = fieldWeight in 1205, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1205)
      0.4 = coord(2/5)
    
    Abstract
    Text mining and machine learning methodologies have been applied toward knowledge discovery in several domains, such as biomedicine and business. Interestingly, in the business domain, the text mining and machine learning community has minimally explored company annual reports with their mandatory disclosures. In this study, we explore the question "How can annual reports be used to predict change in company performance from one year to the next?" from a text mining perspective. Our article contributes a systematic study of the potential of company mandatory disclosures using a computational viewpoint in the following aspects: (a) We characterize our research problem along distinct dimensions to gain a reasonably comprehensive understanding of the capacity of supervised learning methods in predicting change in company performance using annual reports, and (b) our findings from unbiased systematic experiments provide further evidence about the economic incentives faced by analysts in their stock recommendations and speculations on analysts having access to more information in producing earnings forecast.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.2, S.400-413

Years

Languages

  • e 127
  • d 9
  • sp 1
  • More… Less…

Types